
Classification of schemes

Philipp Heinisch
Bahnhofstr. 80

33102 Paderborn
phhei@mail.uni-paderborn.de

Abstract

The identification, verification and index-
ing arguments in natural language is a very
complex task. Solving it would lead to
easier, more varied and trustworthy argu-
mentation. One step to complete this task
is to classify the arguments to argumen-
tation schemes that are common patterns.
This paper will present two machine learn-
ing approaches to solving this classifica-
tion task automatically. In addition, this
paper presents an approach in the seman-
tic web, with which you can infer in an
argument network argumentation schemes
based on description logic. We will com-
pare the results of the machine learning
classification with the human classifica-
tion. The automatic classification on dif-
ferent text corpus databases for the pre-
sented approaches has an average accu-
racy of ≈ 75%.

1 Introduction

There is a continuing growth in the volume of data
(natural language) that we can find on the internet.
In (product) reviews, forums, discussions, papers
and so on we can find lots of arguments for dif-
ferent topics. For example, a key feature of sci-
entific writing is the use of argumentation (Green,
2015). However, because of the fact that most of
the arguments are written in natural language, we
must think about which way a computer can un-
derstand that – for higher goals, too. A good step
to understand automatically and compute on argu-
ments in natural language is to apply argumenta-
tion schemes on it. Argumentation schemes are
common and abstract patterns for arguments of
humans (Lawrence and Reed, 2016). In this pa-
per we will define argumentation schemes (chapter

2.1) and scheme sets (chapter 2.2). Then we will
face the question, how we can automatically clas-
sify arguments to such argumentation schemes.
Therefore, we will present two machine learning
approaches (3) and then a semantic web approach
in chapter 4. This approach based on description
logic can be used to complete networks of argu-
ment components by logical inference.
Classifying arguments results in a bunch of
new possibilities. We can automatically iden-
tify complex argumentative structures (Lawrence
and Reed, 2016). Individual agents can rea-
son about and develop arguments that employ
schemes (Reed and Walton, 2005). And for exam-
ple for reviews we can improve our fact-checking:
”It has been shown that argumentation schemes
are useful in evaluating common arguments as fal-
lacious or not (van Eemeren and Grootendorst,
1992). In order to judge the weakness of an ar-
gument, a set of critical questions are asked ac-
cording to the particular scheme that the argument
is using, and the argument is regarded as valid
if it matches all the requirements imposed by the
scheme.” (Feng and Hirst, 2011).
A further research goal with the help of ar-
gumentation schemes is to automatically de-
tect and complete enthymemes (Feng and Hirst,
2011). An enthymeme is a missing unstated
premise that is paraphrased by presenting gener-
ally accepted background knowledge of the human
reader (Green, 2015)

2 Foundations

In this chapter we want to have a look at the foun-
dations. Especially we will define the concept of
argument schemes (2.1) including an example in
chapter 2.1.

2.1 Definition and formalization of
argumentation schemes

Different definitions exist, two of them are:

”Argumentation schemes are pat-
terns of non-deductive reasoning that
have been the focus of extended study in
argumentation theory [...] a handy guide
to the ways and means of persuading an
audience” (Reed and Walton, 2005)

”Argumentation schemes are ab-
stract descriptions of acceptable, but not
necessarily deductively valid, forms of
argument used in everyday conversa-
tion” (Green, 2015)

To sum up, argumentation schemes are frame-
works (or furthermore guidelines) for the natu-
ral language. Typically, an argumentation scheme
consists of one conclusion and at least one (often
two) premises. Each part – so each premise and
conclusion – is called proposition or scheme com-
ponent (Lawrence and Reed, 2016).

An example
Many of argumentation schemes were already de-
fined. The two main papers (Feng and Hirst, 2011)
and (Lawrence and Reed, 2016) present four com-
mon argument schemes together: Argument from
Example, Argument from Cause to Effect, Argu-
ment from Verbal Classification, Practical reason-
ing1.
We want to have a detailed look at one of the
schemes: Argument from Cause to Effect. The
abstract description of that scheme contains three
components, which we can see in Figure 1.
Let us a assume we read in a forum about envi-

ronmental pollution and a user argues against pol-
lution by the following argument: You know, gen-
erally, if all glaciers melt, then the sea level will
increase by 66m. Actually, the glaciers are melt-
ing, faster and faster! So, the sea level will in-
crease significantly and e.g. the Netherlands will
have a big problem!
If we analyze this argument, we can see that the
major premise is: ”If glacier melt occurs, then the
sea level increase will occur”. We can find the mi-
nor premise, too: ”The glacier melt occurs”. So,

1You can find an overview about a few
schemes at https://www.reasoninglab.com/
patterns-of-argument/
argumentation-schemes/
waltons-argumentation-schemes/

Major premise:
Generally, if A occurs,

then B will (might)
occur.

 Minor premise:
In this case, A occurs

(might occur).

Argument from
Cause to Effect

Schaltfläche

Conclusion:
Therefore, in this

case, B will
(might) occur.

Figure 1: The abstract description of the argumen-
tation scheme argument from cause to effect

we have a reasonable conclusion: ”Sea level in-
crease will occur”.

Formalization of arguments and
argumentation schemes with AML
We sum up the approach of the paper (Reed and
Walton, 2005) in this chapter.
The first step of the formalization of argumenta-
tion schemes is the use of the propositional logic
(PL). PL is a kind of logic with all logical opera-
tors and propositions. A proposition is a premise
or conclusion. In the equation 1 we can find an ex-
ample, each line is a proposition – so first we have
two premises and then the conclusion.

A→ B

A

B (1)

For our example (2.1), attribute A is the glacier
melt and B the sea level increase.

Formalization of arguments with AML The
Argument Markup Language is an annotation lan-
guage based on XML. With AML we can anno-
tate arguments, for example we can specify the
used scheme, enthymemes, premises and the con-
clusion.
The Araucaria software, an argument software,
stores its content in AML. The Araucaria corpus
contains a lot of annotated arguments from parlia-
mentary records, online discussion boards, news-
papers and magazines (Green, 2015).

Formalization of argumentation schemes with
AML DTD Next step unto that is to write the

schemes down in AML Document Type Definition.
The goal is to comprise each scheme in
the AML DTD into a tuple of the form
< SName, SConclusion, SPremises >.
SName is a unique identifier for the scheme.
In SConclusion we define the type of the con-
clusion and in SPremises a set of types of the
premises.

2.2 Scheme sets

A scheme set is a catalogue of argumentation
schemes (Green, 2015). A good scheme set covers
(nearly) all existing arguments with exactly one
fitting argumentation scheme of the set.
Everyone can define his own scheme set by select-
ing a bunch of schemes. However, we can find
scheme sets in the research area, which are often
referred to.
One of the best-developed scheme sets in argu-
mentation theory is the scheme set by Douglas
Walton, known as Walton’s scheme set (Feng and
Hirst, 2011). It’s focused on presumptive argu-
ments (Walton, 2013) and contains more than 60
schemes, increasing year by year.
Other known scheme sets are:

• by Joel Katzav and Chris Reed (Katzav
and Reeds scheme set) with over 100
schemes (Katzav and Reed, 2004)

• by John Pollock (Pollocks scheme set) (Feng
and Hirst, 2011)

• by Grennan (Reed and Walton, 2005) and
more

3 Machine learning classification
approaches

There are several machine learning approaches to
classify argumentation schemes. The basic princi-
ple is to train a set of classifiers with already anno-
tated training data. Notice that not all approaches
can handle raw natural language, but requires pre-
processing. For example, some approaches re-
quire that another algorithm already detects argu-
ments in natural language including the classifica-
tion of premises and conclusion (Feng and Hirst,
2011). But this is another well-researched topic.
In this chapter we will have a look at two ap-
proaches: the first one was published by Feng&
Hirst in 2011 (3.1) and the second one from
Lawrence& Reed in 2016 (3.2).

3.1 Approach from Feng& Hirst
In this sub chapter, we summarize the machine
learning approach of (Lawrence and Reed, 2016).

The expected input for this approach is an ar-
gument in natural language, where the proposi-
tions are already classified. The order and the
content of the premises and conclusion are already
known.

The output will be a guess of the name of argu-
mentation scheme that was used in that argument.
The approach took only the five most frequently
occurring schemes of Walton’s scheme set into ac-
count (Green, 2015): argument from example, ar-
gument from cause to effect, practical reasoning,
argument from consequences and argument from
verbal classification. If the user inputs an argu-
ment, which uses a different scheme, the approach
will return one of the five names incorrect.

Description of the approach/ algorithm
The algorithm measures a set of features. The fea-
tures that are independent of the applied argumen-
tation scheme (3.1), are called general features.
The values of each feature in combination (general
trained classifier) return an argumentation scheme
guess. In addition, there is a set of scheme-specific
features. Each scheme has its own set of features
that give a hint for or against a particular scheme
(3.1).

General features are the location of the con-
clusion in the argument, the location of the first
premise, the gap between the conclusion and the
first argument and the number of explicit premises.
In addition, the ratio between the character length
of all premises and all conclusions is calculated.
Furthermore, the question, whether the conclusion
is for the first premise or not is answered. A last
general feature is the type. If there are two or more
inter-dependent premises, but only those who are
necessary for the validation of the conclusion, we
call the argument a linked argument. One example
of a linked argument is the one in chapter 2.1. If
there is only exactly one premise which is suffi-
cient for the argument, it is called a convergent ar-
gument. It is a further research topic to determine
the value of this feature, but it has a huge impact.
Experiments show that the accuracy is increased
by -0.5% to 20.1% by using that feature.

Scheme-specific features are in general relation
patterns, grammar, count of positive and negative

propositions, punctuation cues, keywords, similar-
ity and central words (Stanford parser is used). For
the example of the scheme argument from cause to
effect we have 22 keywords/ cue phrases like re-
sult, related to, lead to etc. Furthermore, we take
ten relation patterns into account for this scheme.
Let us say that two schemes share the same key-
word or punctuation key. To avoid rash guesses
for particular scheme-specific features, we com-
pute the degree of belief (confidence value c) that
a particular argument A belongs to a particular
scheme S. Therefore we use the distribution char-
acteristics of the cue phrase or pattern in our train-
ing data, like we can see in Formula 2, where cp
means cue phrase and mi the number of scheme-
specific cue phrases. In boolean mode, the number
indicating how often the cue phrase is found in the
argument, is limited to 1. Later we normalize the
confidence values.

cS =

mS∑
k=1

P (A ∈ S|cpk ∈ A) ·#cpk ∈ A (2)

Experiments and results

The experiments used the AraucariaDB corpus.
The paper presented two setups to train and mea-
sure the approach: the first one is the one-
against-others classification. In this setup, the
data contains 50% arguments of one particular
scheme (target scheme) and 50% arguments of
other schemes. The task was to determine whether
a specific argument belongs to that target scheme
or not. The approach is better then a random guess
(baseline 50%): the best average accuracy for the
scheme practical reasoning is 90.8%, for argu-
ment from cause to effect 70.4% and the worst one
is argument from consequences (62.9%). By using
the general feature type and the count mode for the
confidence of scheme-specific features we reach in
overall average an accuracy of 75.5%.
The second measurement approach is pairwise
classification, where we have only arguments of
two schemes (50% of each). The task is to dis-
tinguish the arguments regarding their schemes.
Here, the best average accuracy that we reach is
98.3% by distinguishing practical reasoning and
argument from verbal classification because the
schemes are very different from each other. The
worst result of this setup is 64.2%, in overall aver-
age 85.6%.

TRAINING
DATA

Arguments

VALIDATION
DATA

Arguments

Argument = Text
? premises

? conclusion

Argument
5 premises/
conclusions

 Defined scheme
components

complete
scheme
instance

matching

4 schemes
Walton

 one-against-
Others

classification

Figure 2: Abstract control flow of the approach of
(Lawrence and Reed, 2016)

3.2 Approach from Lawrence& Reed

In this sub chapter, we summarize the machine
learning approach of (Lawrence and Reed, 2016).

The expected input for this approach is a set
of arguments – the raw natural language, seg-
mented into propositions.

The output will be a guess of the used argu-
mentation scheme for each argument. In addition,
the algorithm determines the scheme components,
for example, we will know, which premise be-
longs to which part of the abstract description of
the scheme and where the conclusion is. This ap-
proach took only four most frequently occurring
schemes of Walton’s scheme set into account: ar-
gument from example, argument from cause to ef-
fect, practical reasoning and argument from ver-
bal classification.

Description of the approach/ algorithm
You can find an abstract control flow of the algo-
rithm in Figure 2. In this chapter we will look at
the specific steps in detail.

First step of the algorithm: Identifying scheme
components The approach provides a range of
classifiers for each proposition type. Each classi-
fier uses a subset of the following features:

• Unigrams: take a look at every single word in
the proposition, e.g. keywords

• Bigrams: always takes two successive words
in the proposition, e.g. for searching cue
phrases

• length (number of words) of the proposition

• the average length of each word in the propo-
sition

• parts of speech by Python NLTK POS-tagger

• punctuation (cues)

• similarity: the maximum similarity2 of a
word in the proposition to pre-defined words
corresponding to each proposition type. E.g.,
the scheme component major premise of our
example scheme (2.1) should contain similar
words to generally and occurs.

The paper presented three different types of clas-
sifiers: Multinomial Naive Bayes classifier, Sup-
port Vector Machines (SVMs), Decision Trees.
Since the Multinomial Naive Bayes classifier type
achieves the overall best results, we choose this
type.
Besides this one-against-other classification ap-
proach for training the classifiers and annotating
the arguments, the paper presented the pairwise
classification, too. Here we assume that we al-
ready know the argumentation scheme and the task
is to match the premise scheme components (like
minor and major premise in the argument from
cause to effect scheme) in a right way to the set
of premises of the argument.

Second step of the algorithm: Match scheme in-
stance For this step, we assume that we already
annotated the scheme components (done by the
first step3). The idea is to have a look at each five
successive scheme components. If we find a set of
scheme components equal to a set of scheme com-
ponents of one particular scheme in that frame,

2the similarity score is calculated using WordNet:
https://wordnet.princeton.edu/

3used one-against-other classification with type Multino-
mial Naive Bayes classifier

we bundle these scheme components under that
scheme. If only one component is missing, we
search for this missing component again in this
frame by lowering the threshold for the classifier
for this scheme component. If the missing compo-
nent is still not found, we assume that there is an
enthymeme in the argument.

Experiments and results
First, the paper investigated the fitness of the sin-
gle classifiers for the scheme components. They
used an extended AraucariaDB corpus. The re-
sults for finding out a particular scheme compo-
nent from a random set of scheme components
(baseline: 50%) are between 44% and 88% for
Naive Bayes, in average 71%. If we take all three
classifier types into account, we can observe 57%
- 91%. In addition, the paper used the proposition
corpus from the Digging by Debating project4 for
the experiences. It contains many arguments from
a psychology textbook. Based on this experiment
the paper sums up that they came close to identify
at least where a scheme is occurring with a general
high accuracy.

3.3 Evaluation of classification approaches

The second approach of Lawrence& Reed claims
to have similar accuracy values to determine ar-
gumentation schemes like the first approach of
Feng& Hirst (Lawrence and Reed, 2016). To
prove that, they used the same dataset, but never-
theless they only distinguished between four and
not five argumentation schemes. The big advan-
tage of the second approach is that it does not only
compute the used scheme names but the location
of components in the text, too.
Overall the average accuracy of≈ 75% (the one of
four guesses is wrong) does not seem very reliable.
However, it is a good first step in this research
topic. In addition, we should take into account that
it is even for humans it is not easy to classify ar-
guments. There was for example an experiment,
where students and expert should classify argu-
ments in a scientific text about genetics. The task
was to match every argument to the one right out
of 10 schemes. The schemes were not common
because of this special genre of the text. There
were a bunch of different experiment setups. In
average, only 49% of the students completed the
task successfully and 95% of the experts (Green,

4http://diggingbydebating.org/

2015).
To understand that it is sometimes hard to distin-
guish, one can have a look at argument from exam-
ple5 and the argument from verbal classification6

4 Graph analysis: Argumentation
schemes in Semantic Web

In this chapter, we summarize the approach of
(Rahwan et al., 2011).
For understanding this approach, we first need
to understand, how we can model argumentation
schemes in a graph, or more specific: in the se-
mantic web.

4.1 Foundations of argumentation in
Semantic Web

Semantic Web is a word for linked data. One basic
concept of this is the Resource Description Frame-
work (RDF) that arranges all data into triples,
consisting of a subject, a predicate (the link) and
an object. The formalization of argumentation
schemes is based on the Argument Interchange
Format (AIF), a core ontology of argument-related
concepts. It leads to an argument network (di-
rected graph) with argument entities as nodes.
Each node can contain a bunch of attributes, ad-
ditional information to the argument. Firstly there
are the information nodes filled with one propo-
sition. Two information nodes must not be con-
nected directly to each other. In addition, scheme
nodes (S-Nodes – patterns of reasoning) are de-
fined, e.g the inference application nodes (RA-
node).
Until now, we can only model specific examples,
because of the fact that in AIF nodes represents
instances, not classes. For that, the ARGDF on-
tology (depends to RDF) was founded. The on-
tology extends the AIF with two types of classes:
the Form node (F-node) for representing a gen-
eral form of a proposition and the scheme class
node with the name of the argumentation scheme.
That gives us the opportunity to model argumen-
tation schemes. An example of the argumentation
scheme of Argument from Cause to Effect (related
to the example in chapter 2.1) is visualized in Fig-
ure 3.

5https://www.rationaleonline.com/
map/s5tfy6/argument-from-example

6https://www.rationaleonline.com/
map/tsh4n9/
argument-from-verbal-classification

 if A occurs, then
B will (might)

occur.

 In this case, A
occurs (might

occur).

 Argument
from cause

to effect

 In this case, B
wIll (might)

occur

if all glaciers melt,
then the sea level

will increase by
66m

Actually, the
glaciers are

melting

S-Node
So, the sea level

will increase
significantly

supports hasConclusion

fullfillsScheme
(instance_of)

fullfills
fulfillsPremise

fullfills
Premise

hasPremise hasConclusion

AIF

+ ArgDF

Figure 3: Formalization of the argumentation
scheme Argument from Cause to Effect with
ARGDF. The upper shaded part represents the
argumentation scheme in general, the lower un-
shaded part represents a specific instance of the
scheme – like we can find in a AIF argument net-
work. The instance can be further connected with
other arguments.

The paper (Rahwan et al., 2011) does a further
step and presents a way to describe argumenta-
tion schemes in description logic. DL is a family
of logics for reasoning and knowledge representa-
tion. It decides between terminology and concrete
facts (for the world description like the specific ar-
guments of a discussion). We will use the DL of
the Web Ontology Language (OWL). OWL is a se-
mantic web language that extends RDF.
The interesting part in OWL-DL is the idea of
classes including inheritance (terminology) and
instances of these classes (argumentation schemes
or propositions). First, in OWL-DL, all schemes
(corresponds to AIF S-Nodes) and their classes,
propositions (corresponds to AIF I-Nodes) and
their classes (called statement) or meta informa-
tion are things. In each subclass layer (inher-
ited from a more general class), we describe more
specifically, what we want to describe.
In addition, OWL-DL offers a bunch of proper-
ties (so-called roles). With those, we can add
meta information to our classes and instances like
the creation date, the title, the author, the claim
text for instances (propositions) and more. Each
scheme class must be related to a creation date
and a title. Furthermore, a scheme class must
have a relation (modelled with a certain property)
to one statement as the conclusion and at least
one relation to a statement as premises. With

owl:Thing

SchemeStatementStatement Statement

RuleScheme

Deductive-
Argument

ArgCauseTo-
Effect

(argumentation
scheme)

Declarative-
Statement

Declarative-
Statement

Declarative-
Statement

GeneralCause-
Effect-

OccursStmnt

CauseOccurs-
Stmnt

EffectOccurs-
Stmnt

Intermetatite layer possible: ArgModusPonens

:has-
Conclu-

sion

:has-
Premise

:hasPremise

owl-instances / AIF argument network

Figure 4: A snapshot of a tree in OWL-DL
regarding the example of 2.1. Notice that the tree
is not complete, but contains only all necessary
paths and nodes for describing the argumentation
scheme Argument from Cause to Effect. Of
course, we can and should reuse any statement
that was used for this particular scheme.
The code of the scheme would
be ArgCauseToEffect ≡
(DeductiveArgument u
∃hasConclusion.EffectOccursStmnt u
∃hasPremise.GeneralCauseEffectOccurs−
Stmnt u ∃hasPremise.CauseOccursStmnt)

the formDescription, an annotation property
in OWL-DL, we can describe the statements (the
components of an argumentation scheme) in an
abstract way.
An inheritance tree based on OWL-DL is visu-
alised in Figure 4, again with the example from
2.1. This inheritance including the relation will
establish many reasoning methods.

4.2 Approach and ideas for scheme
classification

For the approach of (Rahwan et al., 2011), we
assume an argumentation network/ graph, based
on OWL-DL. So we assume that each node in
the network is already specified (related to a de-
fined class), at least to the most general class
owl:Thing. For retrieving more specific infor-
mation, so more specific class relations, we as-
sume furthermore that at least the nodes of one
argumentation scheme instance have more spe-
cific class annotations. The approach is useful if,

for example, a user or machine (like the machine
learning approaches in chapter 3) already specifies
more specific classes regarding a subset of nodes.
The approach will help us to fill the gaps of types
in the graph or at least to determine a specific set of
class suggestions for an instance node. In addition
to each scheme class in DL, we can refer a class of
assumption statements and exception statements
that can be used for verifying and attacking a par-
ticular argument of that scheme with another argu-
ment or an argument component (Rahwan et al.,
2011).
So, how can we match an argument (in an AIF ar-
gument network) to his particular argumentation
scheme? The paper (Rahwan et al., 2011) pre-
sented a bunch of approaches, which based on
the inference techniques of the OWL-DL. For ex-
ample, the OWL-DL is able to detect transitiv-
ity. For example, if the conclusion of an argu-
ment supports a premise of a second argument and
the conclusion of the second argument supports a
premise of a third argument, OWL-DL is able to
determine the indirect support from the first ar-
gument to the third7. Same with the subclasses:
if A is a subclass of B and B a subclass of C,
OWL-DL detects that A is a subclass of C, too.
For example, if the user queries for all statements
of DeductiveArgument, he will get the state-
ments of ArgumentFromCauseToEffect,
too.
This technique in the combination of the condi-
tions defined on each scheme will help us to infer
the matching statement classes for each particular
proposition and so in the end to infer the argumen-
tation scheme.
The first technique is to find scheme subclasses.
We assume that we already know the classes of the
instances of the scheme components (statements)
of 2 schemes: S1 and S2. Without loss of general-
ity we assume that the number of premises of S2

is equal to or higher than the number of premises
of S1. If for the conclusion C is hold that (CS1 ≡
CS2)∨CS2 v CS1 (conclusion of S2 is of the same
class or a subclass of the conclusion of S1) and
for each premise PS1 we can find a correspond-
ing premise PS2 with (PS1 ≡ PS2) ∨ PS2 v PS1 ,
then we infer that S2 v S1 (the scheme class of
S2 must be the same or a subclass of S1

8). With

7such arguments sequences are called chained arguments
8If the number of premises are equal and if there is no

subclass relationship between the propositions, we have the
special case of S1 ≡ S2

Premise2

Premise1

S-Node S1

Conclusion

supports

hasConclusion

Premise1

S-Node S2

Concluion

supports

hasConclusion

 CauseOccursStmnt

Statement
Declarative

Statement

 Effect
Occurs

Stmnt

 Effect
Occurs

Stmnt

ArgCause

ToEffect
ArgCause

ToEffect

Scheme

≡

≡

Figure 5: Example (in an AIF argument network)
of the approach of (Rahwan et al., 2011) that infers
the argumentation scheme of the left argument.
Notice that this approach doesn’t require a node
that both arguments use.

that technique, we can determine a more and more
concretely set of matching argumentation schemes
– from owl:Thing to the most specific matching
scheme class. There is an example in Figure 4.2
You can think about more techniques. For exam-

ple, let us assume, we know the class of n − 1
propositions of an argument with n propositions
in a good detailed degree (maybe the most spe-
cific subclass), but not that for one proposition. By
iterating about all known sensible argumentation-
schemes, we can maybe reveal or guess a more
specific class for that one proposition. And since
we are working in an AIF argument network and
scheme components are sometimes chained or
reused, we can infer more and more specific in-
formation.
However, there was no fully automatic algorithm
presented in (Rahwan et al., 2011) that has as in-
put only the pure AIF argument network and as
output a graph, completely labelled with specific
argumentation-schemes.
Instead, the paper presented the Web-based sys-
tem Avicenna. The system allows to explore avail-
able arguments, listed by their titles. Furthermore,
we can create new arguments. The user can re-

fer the new argument to an argumentation scheme
and can reuse already existing propositions (called
claims).

5 Conclusion

We looked on the (automatic) classification of ar-
gumentation schemes. Further research focused
mainly on fundamental text mining tasks, but there
is the need to extract complete arguments to au-
tomatically identify complex argumentative struc-
tures (Green, 2015). We presented a milestone in
this task with the argumentation schemes.
The research of scheme classification with ma-
chine learning is advanced – so we presented two
approaches in that area: the approach of Feng&
Hirst (chapter 3.1) and of Lawrence& Reed (chap-
ter 3.2). Both used a feature set for their classi-
fiers. Feng& Hirst distinguished between general
features and scheme-specific features. Lawrence&
Reed used classifiers to determine scheme compo-
nents, so that they can conclude schemes out of the
scheme components. Unfortunately, this two-step
approach didn’t lead to significant improvement of
the accuracy. Approximately one of four guesses
for the scheme is wrong. Even for humans, it is
hard to classify sometimes – we can observe that
by looking to the long discussions of the anno-
tators in the Araucaria database (Feng and Hirst,
2011). However, if one doesn’t have a critical ap-
plication based on scheme classification, we think
that it is sufficient. For example, a tool that helps
to verify arguments by asking critical questions or
a tool that makes suggestions for enthymemes, can
work with that accuracy without critical consider-
ations.
In addition, the success of the computer computa-
tion approaches depends on the genre and topic of
the text, due of various argumentation styles and
domain-specific language rules in different fields.
For example, the computation in scientific papers
about genetics needs further research, even though
there is already a BioNLP existing, where we can
crawl articles about genetics (Green, 2015).
Finally, we can conclude that it is useful and in
some areas required to have further research in ar-
gument scheme classification – for example in the
Semantic Web (4) – but we can already use the ex-
isting approaches to fulfil tasks that require classi-
fied arguments.

References
Vanessa Wei Feng and Graeme Hirst. 2011. Classify-

ing Arguments by Scheme. In Proceedings of the
49th Annual Meeting of the Association for Compu-
tational Linguistics, pages 987–996, Portland, Ore-
gon. Association for Computational Linguistics.

Nancy Green. 2015. Identifying Argumentation
Schemes in Genetics Research Articles. In Proceed-
ings of the 2nd Workshop on Argumentation Min-
ing, pages 12–21, Denver, Colorado. Association for
Computational Linguistics.

J. Katzav and C. A. Reed. 2004. On Argumenta-
tion Schemes and the Natural Classification of Ar-
guments. Argumentation, 18(2):239–259.

John Lawrence and Chris Reed. 2016. Argument
Mining Using Argumentation Scheme Structures.
Frontiers in Artificial Intelligence and Applications,
287(Computational Models of Argument):379–390.

Iyad Rahwan, Bita Banihashemi, Chris Reed, Douglas
Walton, and Sherief Abdallah. 2011. Represent-
ing and classifying arguments on the Semantic Web.
The Knowledge Engineering Review, 26(04):487–
511.

Chris Reed and Doug Walton. 2005. Towards a Formal
and Implemented Model of Argumentation Schemes
in Agent Communication. Autonomous Agents and
Multi-Agent Systems, 11(2):173–188.

Douglas Walton. 2013. Applying Argumentation
Schemes. In Methods of Argumentation, chapter 4,
pages 93–121. Cambridge University Press.

https://doi.org/10.3115/v1/w15-0502
https://doi.org/10.3115/v1/w15-0502
https://doi.org/10.1023/B:ARGU.0000024044.34360.82
https://doi.org/10.1023/B:ARGU.0000024044.34360.82
https://doi.org/10.1023/B:ARGU.0000024044.34360.82
https://doi.org/10.3233/978-1-61499-686-6-379
https://doi.org/10.3233/978-1-61499-686-6-379
https://doi.org/10.1017/s0269888911000191
https://doi.org/10.1017/s0269888911000191
https://doi.org/10.1007/s10458-005-1729-x
https://doi.org/10.1007/s10458-005-1729-x
https://doi.org/10.1007/s10458-005-1729-x
https://doi.org/10.1017/cbo9781139600187.004
https://doi.org/10.1017/cbo9781139600187.004

