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Abstract.
Stance classification is an essential step in computational argumentation and the ar-
gument search. For example, an argument search engine should present arguments on
the correct side – PRO or CON. This classification is a difficult problem because it
must deal with the diversity in natural language in an open domain context. Also, the
stance prediction must be quickly executable on demand. There exist already promis-
ing approaches in stance classification. Our approach is based on a modular approach
which divides the problem into three subtasks: the target identification, the sentiment
classification towards the targets and the contrast classification of the topic towards
the claim which the stance classifier processes. This thesis answers whether this idea is
an applicable approach for stance classification in the argument search, too. This the-
sis discusses and evaluates adaptations to reach sound effectiveness and efficiency. Our
approach outperforms a heuristic which an argument search engine uses. Hence, this
thesis contributes insights to improve the stance classification in argument search and
suggests further ideas to improve on the classification like using contextual features.
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Introduction
1

There is overwhelming user-generated content on the Internet in these modern days. Millions
of people share their opinions, likes, rates and have discussions in social networks like Facebook
and Twitter. This behaviour results in a significant possibility to extract knowledge from the
Internet.
Hence, we are living in a remarkable time where we have a massive amount of data freely avail-
able. A considerable part of this data is unstructured and in natural language. Hence, it is
initially not possible for a computer to understand and structure this data. Humans can do
this – but there is too much data to process it all manually. Hence, an automatism would be
helpful to extract knowledge and make the data more usable. This automatism is called natural
language processing based on machine learning. The massive amount of data including prepro-
cessed datasets and the computational power gives us the possibility to retrieve more and more
information mechanically.
One exciting part of this data contains arguments – often written by humans in natural lan-
guage. Persons need arguments in political discussions, finances, science, decisions, in daily
life and more areas. Arguments help people to evaluate things or to convince somebody. The
extracted knowledge can support, for example, debates, which is necessary to build persuasive
arguments. During the upraising research area of natural language processing, machines can
help with good PRO and CON arguments (Bar-Haim et al., 2017a). Already now, it is possible
that the computer is supporting a human in debating or making decisions. One practical exam-
ple is the IBM Debater R© in the debating support (Bar-Haim et al., 2017a). The company has
run this project to provide artificial intelligence that will be able to argue with a human about
a random complex topic like climate policy.
Until now, the general Internet user does not notice much about computational argumenta-
tion. Still, the use cases of computational argumentation for daily life are numerous: automated
decision making, opinion summarization, deep opinion mining and even on-demand argument
construction (Stede and Schneider, 2018). However, standard search engines like Google do not
offer that. However, “Computational argumentation is expected to play a critical role in the
future of web search.” (Wachsmuth et al., 2017) Let us consider a computational argumentation
search engine like http://www.args.me/. In contrast to other conventional search engines which
are indexing web pages, it indexes and retrieves arguments (Wachsmuth et al., 2017). In the
search on arguments against a search query, which is the specified topic, it is necessary to know
whether an argument is for or against the topic. Consider the significant question: “Does God
exist?”. The related search query can be the existence of God. If the user of the search engine
wants to debate for God’s existence, he is primarily interested in the PRO arguments. In the
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perspective of an atheist, he would probably be primarily interested in the CON arguments.
The stance of an argumentative text is the overall position toward an idea, object or proposi-
tion (Somasundaran and Wiebe, 2010). It is specified by the standpoint which the author argues
to be true. An argument is a rational construct which justifies a standpoint. An argument con-
tains one or more propositions and the claim, the standpoint. The propositions are related to
the claim and support it (Stede and Schneider, 2018). Often there is a relation to the sentiment
of a text or the polarity. An example (PRO) for the sentiment correlation is: “Hallelujah, I
experienced that God exists and I am happy about it!” However, a stance can be expressed
without polarity, too. In the topic of the existence of God, a PRO example would be: “Kurt
Gödel introduced the ontological proof of God’s existence.”
Stance classification is, given a topic (for example a search query) and a set of claims, to deter-
mine which of these claims argues for and which against the topic – so sorting them into the PRO
class and the CON class (Bar-Haim et al., 2017a). The task is to do that automatically. Stance
classification does not measure the relevance of a claim regarding the topic. However, stance
classification is an essential and required step in several natural language processing pipelines
which are related to the field of computational argumentation.

Automatic stance classification is not trivial – there are several challenges. First, stance classifi-
cation is based on natural language. It is difficult for a computer to deal with natural language.
The use of language is not consistent but depends on the general topic. Words with ambiguous
meanings exist like “letter”. A second challenge with natural language is the implicit point, for
example the existence of enthymemes (Rajendran et al., 2016). It is like an iceberg (Wojatzki
and Zesch, 2016): the written text shows only the small part above the water, but the major
part is below that. Often people presuppose lots of background knowledge and do not express
such facts or relations. The problem becomes apparent in argumentation: Consider the text:
“The cosmological argument implies God’s existence”. This sentence assumes knowledge of the
cosmological argument. Alternatively, suppose the argument: “The pain in the world implies the
non-existence of an almighty, loving God” contains the hidden claim (therefore an enthymeme)
that almighty love is determined by always preventing pain. The research area of argument
mining treats implicit argumentation (Wojatzki and Zesch, 2016). The determination of im-
plicit argumentation is no necessary requirement for stance classification, but enthymemes can
increase the difficulty of the classification. Another critical point, especially in argumentation,
is the different usage of natural language. The language differs in the theme of the debate, and
for example, the date of the entry in political discussions influences the meaning (Vilares and
He, 2017). It is a big difference whether the debate is in public, face to face, or (anonymous)
on the Internet. Because of the lack of generalisation, different research papers exist in the
area of computational argumentation like for discussion on forums (Hasan and Ng, 2013) or
Twitter (Addawood et al., 2017). Research has shown that the “debates in public forums differ
from congressional debates and company-internal discussions in terms of language use” (Hasan
and Ng, 2013). Besides that, even in a similar case like a specific forum, the research has shown
that the writing style differs from person to person (Khan et al., 2016). So, it is hard or even
impossible to train the one general classifier which always performs well – independently of the
domain (Vilares and He, 2017).
However, there are more problems and challenges in stance classification like negation. A single
word like “not” does not invert necessarily the whole context/stance like in logics. Besides,
argumentation can contain sarcastic and comparative sentences and more (Khan et al., 2016).
Moreover, there are even more challenges like the problem with dual meaning words and incom-
plete (opinion) lexicons (Khan et al., 2016).
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Chapter 1. Introduction

The challenges show the difficulty of the stance classification task. Hence, lots of research
takes place, and still, it is not finished yet. If there is stance information from debate forums
where a crawler collects claims a simple heuristic can be applied (Wachsmuth et al., 2017).
However, if such information is missing, obviously, machine learning is required to come up
with satisfying results. Hasan and Ng (2013) pointed out that unigrams (the occurrences of
single words) as features is a relatively strong baseline. For spontaneous speech, unigrams are
even the best choice. Other approaches take sentiment and arguing features into account, some-
times also with unigrams. Somasundaran and Wiebe (2010) trained a classifier with features
like aspect-based polarity, discourse relations, subjectivity and arguing lexicons. Ranade et al.
(2013) exploited other texts of the same author to predict the stance. Faulkner (2014) strongly
considered linguistic research with linguistic subtleties. Hasan and Ng (2013) combined N-gram
features (the occurrences of n consecutive words), syntactic features, semantic features, Internet
query search and author constraints to large feature vectors. Finally, Somasundaran and Wiebe
(2009) converted the stance classification problem in an integer linear programming problem.
All these approaches suffer, e.g. in the drawback of topic-specific features (Faulkner, 2014) or
the requirement of many posts from the same user (Ranade et al., 2013). Sometimes the existing
approaches are very limited to a specific domain. Moreover, all these approaches are not totally
reliable: they accuracy is between 61% and 82%. Only the approach of Somasundaran and
Wiebe (2009) claimed accuracy of 100%, but the authors admit that they used only a small test
set.
Stance classification in argument search is to classify the stance of a (crawled) text snipped
regarding a search query on-demand. This new problem requires several critical points like
a high value of generalisation. The stance predictor can neither assume anything about the
search query nor about the argumentative texts (claims), but they are related to the topic of
the search query. A user should request any topic. Hence, the predictor must deal with un-
known topics – in any domain. The algorithm cannot expect lots of contextual information like
previous approaches do. Furthermore, if the algorithm wants to classify a claim, probably only
a short sentence, an extended text part for extensive annotations is missing. Also, to avoid
dissatisfaction, the predictor should have high accuracy and rapid computation time for each
claim-topic-pair. Caching already requested results is a nice feature, but not a general solution
for this problem.
IN 2017, IBM presented a novel approach of a stance classification which faced issues about nat-
ural language without lots of contextual information and generalisation in argument search (Bar-
Haim et al., 2017a). The novel idea is to predict the stance not directly but with a modular
approach (Bar-Haim et al., 2017a). It divides the classification into the task of Claim Tar-
get Identification, Claim Sentiment Classification and Contrast Classification. The step of the
claim target identification tags the target phrase of the claim. The claim sentiment classifica-
tion determines whether a claim has a positive or negative polarity towards its target. Contrast
Classification answers the question of whether a target of a claim is in contrast to the topic or
search query or not (Bar-Haim et al., 2017a). For example, if we consider the claim “Believing
that God exists is just stupid” and the topic “God does not exist”, then the claim supports the
topic of the search query, even if the sentiment regarding the target of the claim is negative.
However, because of the contrasting targets “God exists” and “God does not exist”, the contrary
claim converts to a PRO argument. This was an easy task for the modular approach, but a
non-modular approach would probably fail.
The problem with this approach is that IBM did not develop it for the case of argument search.
IBM calculates the stance of an (often complex) claim regarding another claim, the topic. This
paper will deal with the problem of stance classification in argument search and will apply the
result in the argumentation search engine args.me. The algorithm must calculate on-demand
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the stance of a claim regarding a search query in the case of this search engine. However, claims
often contain only one word (Ajjour et al., 2019). The claim is the conclusion of a relevant argu-
ment from a debating portal in natural language (Wachsmuth et al., 2017). The arguments were
written by many different users in many different contexts. Hence, this paper will adapt this
approach and will show which improvements are possible with the modular approach in compar-
ison to a simple heuristic which is currently used in args.me (Wachsmuth et al., 2017). For the
adaptation, the paper will present possible steps regarding the preprocessing of the search query
regarding the text snippets which should be classified. A further research task is to find out
and describe which process steps are computable on-demand and show up possible alternatives.
The paper will present further improvements and improvements which IBM suggested like the
automatic expansion of the underlying initial sentiment lexicon (Bar-Haim et al., 2017b).
A further problem with the approach of IBM is the commercial attitude – it is a commercial ap-
plication (Wachsmuth et al., 2017), so the source code or implementation details are not public.
In return, this thesis will present an adapted public implementation of the IBM-Approach (Bar-
Haim et al., 2017a). Additionally, this thesis will present adaptations of the approach for the
case of argument search by trying and verifying different parameters and new features with
different machine learning models.
To avoid a lousy generalisation in this open-domain task and to present comparisons with the
IBM approach (Bar-Haim et al., 2017b), the new algorithm uses for training and testing the
argumentation corpus by IBM. The training, validation and test set combined contains 55 com-
pletely different controversial topics. Each topic has a large set of claims. The 2,394 claims were
crawled from Wikipedia articles, so this thesis deals with various writing styles from different
users (Bar-Haim et al., 2017a).

We tested our adapted implementation additionally on a sample of an argument search engine.
Our modular approach outperforms a simple heuristic which sets the stance of an argument to-
wards the topic to the PRO/CON -flag of argument’s premises towards the conclusion. Also, we
evaluate various text analysis pipelines and configurations of our approach to present a solution
which succeeded with satisfying accuracy and runtime in the argument search.

This thesis contains Chapter 2 of foundations firstly to define and introduce concepts which
are used. The same chapter contains an extensive view of the related work. Chapter 3 describes
the core approach of IBM in detail and asks about the adaptability for argument search. We
will notice that some adaptation steps are mandatory. Some other steps will improve accuracy.
Chapter 4 discusses the mandatory and optional extensions of the adaptation. The thesis will
pin down the concepts to an overview of the written code and machine learning classifiers and
regressors in the following chapter. Also, the chapter provides an insight into the user interface.
The evaluation takes place in Chapter 6. It describes the experimental setup and the results.
Additionally, the chapter analyses the results and compares them with other approaches like
the baseline approach of unigrams and approaches based on machine learning. At the end, this
thesis contains the conclusion chapter (Chapter 7) and will give an outlook and possible future
work.
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Foundations and related work
2

2.1 Foundations and definitions
This section will give an overview of the foundations and definition. We make use of the base
concept of machine learning (Section 2.1.1). This section explains the used learning models and
why machine learning is feasible. Feasibility is the underlying assumption of the whole work.
Section 2.1.1 gives an introduction to validation and testing, too.
Because stance classification works with natural language, Section 2.1.2 introduces natural lan-
guage processing. It describes the central steps and presents a brief overview of the syntax of
natural language.
The last part (Section 2.1.3) of this chapter defines some words which the paper will use later.

2.1.1 The machine learning approach

Machine learning is a strategy to learn by machine from data (Abu-Mostafa et al., 2017). For
example, a child learns from many pictures (data) what a cat is. Hence, if we show an animal
to an adult, he can classify very precisely whether the animal is a cat or not. That is an easy
task, but no adult can describe in a formal analytic way or with a mathematical formula how
he distinguishes a cat from any other animal.
To come back to machines, machine learning can apply sensibly wherever we do not have an
analytic solution but lots of data with enable us to construct an empirical solution (Abu-Mostafa
et al., 2017). In the optimal case, the machine learning algorithm finds a pattern in the data
itself and predicts the right output for every instance. In other words, in the optimal case the
machine learning algorithm finds the best fitting function to the problem in a given hypothe-
ses set. A hypotheses set is a set of functions (mostly infinite) which are applicable for the
problem (Abu-Mostafa et al., 2017). A more detailed description of a machine learning setup
is shown in Figure 2.1. So, in general, machine learning contains two components: the train-
ing and the validation/ testing. If a machine learning algorithm is trained, we can use it for
predicting the outputs for new instances. It is uncommon to train an algorithm which always
predicts correctly for all new instances. Nevertheless, the research explores statistical bounds
like Hoeffding inequality. This bounds show, that, if an algorithm performs well in a large in-
dependently generated training data set, then it will probably perform well for new instances.
Learning is feasible (Abu-Mostafa et al., 2017).
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2.1 Foundations and definitions

Unknown target 
function
f: X → Y

Training data
Training instances
(x1, y1), (x2, y2), …, 

(xN, yN)

Learning 
algorithm

A

Final hypothesis
g

Hypethesis set
H

Unknown input 
distribution

P(x)

g(x) ≈ f(x)

x

x1, x2, …, xN

Figure 2.1: The figure models the basic setup of machine learning by Abu-Mostafa et al. (2017).
Firstly we have an unknown target function f : X → Y which we want to approximate. The func-
tion maps each instance x to its right output y (fuzzy outputs are possible, too). Furthermore,
we have training instances – specific instances of unknown input distribution. Additionally, we
can define a hypotheses set H which contains hopefully f or at least a good approximation of
f . The learning algorithm A is a user-defined algorithm which selects from the hypotheses set
with the help of the training instances in a sometimes very complex process the best fitting
hypothesis. This learning algorithm returns the hypothesis function g. Function g can be used
to predict the output-values (y) for new instances.
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Chapter 2. Foundations and related work

There are several learning strategies. Each strategy has its own requirements to the train-
ing data. The machine learning algorithm is trained with the training data. The supervised
learning delivers the learning algorithm the training instances, including the right output. For
example, if the problem is a classification problem (the output should be a class), each instance
is labelled with the right class (Khan et al., 2016). This thesis deals only with supervised learn-
ing like in Figure 2.1, but there are other learning strategies in use.
A second strategy is the semi-supervised learning. In this strategy, the algorithm does not get
the right output directly, but indirectly by manual tuning by domain experts (Khan et al., 2016).
A third option is the unsupervised learning. In this case, the machine learning algorithm gets
no clue what the right output should be. This strategy is useful for making use of statistical
analyses (building clusters) on a large volume of data. Hence, this strategy does not require
training (Khan et al., 2016). One practical example is a machine, which distinguishes coins,
where the producer does not know the values of each coin batch.

Data for training or predicting outputs contain many instances, known as instance set or
data set X (Frank et al., 2016). These instances x are called data points, too. One main
challenge is to make an instance understandable for a computer which is basically a calculator.
For example, the natural language expression “Sun is shining.” and “The sun shines.” looks
similar to humans. However, both expressions are for a computer just two unequal String
objects which are encoded in bytes. Hence, each instance needs a proper representation, called
features or attributes (Frank et al., 2016). In practice, most machine learning algorithms are
based on vector space models (Wachsmuth, 2015). Each number (value) of a vector represents
a feature. A bundle of features are called feature types, if they belong together conceptually or
are considered in combination (Wachsmuth, 2015). An example of a feature type in case of a
string is the relative frequency of each letter. All features in combination (the vector) are called
a feature set (Khan et al., 2016). It is crucial for machine learning that each feature set of X
has the same number of features, so the same vector length, also called dimensionality. This
property results in the feature space (called instance space, too).

There is the possibility to edit the feature space and the instance representations. One
opportunity is to transform the feature sets. It is possible to apply feature transformation
functions Φ : x 7→ φ(x) (Abu-Mostafa et al., 2017). This transformation maps the instances
to a new feature space Z which can have another dimensionality than the original X space.
Transformations can help to combine or extend single features to a relevant concept. This can
help to solve the problem of predicting wrong outputs. Even it can help to make problems
with a high complex output behaviour solvable for a limited hypothesis set in a satisfying
manner (Abu-Mostafa et al., 2017). It is possible to apply a feature transformation before the
machine learning algorithm. Sometimes it is a fix component of a learning algorithm. In such
a case the transformation is often done by a kernel like in supported vector machines (Meyer,
2018). A kernel is a function K(x1,x2) 7→ z, z ∈ R which often measures the similarity of two
instances.
A effective and common case of transformation before or during applying machine learning is the
feature selection. This step filters the features to reduce dimensionality and get rid of disturbing
features (Frank et al., 2016). The goal is to have only relevant features at the end of this step
which results in a better generalisation. Another reason for feature selection is the reduction of
computation time in general. One practical step to determine the usefulness of each feature type
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2.1 Foundations and definitions

is to train and test a machine learning algorithm isolatelly with each feature type, then with
all feature types except one feature type – for each feature type. In the end, the training and
testing uses all feature types. The last step is the comparison of all results (Blum and Langley,
1996).
Figure 2.2 shows a feature transformation.

x1x1

x1x1

x2x2

Transformation:
Φ(x) = (x1, x1)

Feature selection:
Remove feature x2

Figure 2.2: This figure is a symbolization of transforming the feature space. The squares are
negative instances (means an output y = −1) and the circle is a positive one (y = +1). The
transformation function φ(x) = (x1,x1) (where x is an instance and x1 the only one feature)
adds a dimension. The result is a two-dimensional feature space. It is obvious that the feature
x2 is redundant. An applied filter would remove for example feature x2 in the feature selection
step. The result is again the original one-dimensional feature space.

Learning models

A learning model is the combination of the hypotheses set and the learning algorithm (Abu-
Mostafa et al., 2017). Each learning model has a defined set of hypotheses and provides a
procedure to select a hypothesis function from the set. Hence, the returned hypothesis function
will differ from different learning models. Lots of learning models exist – the procedure to find
the best fitting one for a problem is called model selection (Thornton et al., 2013).

There are two types of learning models. One type is the classifier type. Classifiers predict
classes. These learning models learn from instances with a predefined set of output classes
and will label a new instance with a class of this set. A common base case is binary classi-
fiers (Abu-Mostafa et al., 2017). Binary classifiers classify their instances into negative and
positive (Y = {−1,+1}).
Another type is the regression type. Regressors predict continuous values (real-valued outputs).
One use case is to predict the value of an object. A popular special case of regression is the
probability estimation. The learner does not predict a class in the probability estimation, but
how a confidence score which describes how sure the learner is that an instance belongs to a
certain class. In probability estimation often the Y = [0, 1] (Abu-Mostafa et al., 2017).

A learning model can have hyperparameters. A hyperparameter is a parameter whose value
the user must set before the learning phase. These parameters change the way how the learning
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Chapter 2. Foundations and related work

algorithm works. A hyperparameter can change the hypothesis set or can determine how the
learning algorithm should treat or transform the input data. Hyperparameters can influence
the selection procedure of a hypothesis, too. The learning model defines its hyperparameters
individually by itself. Because of the changing behaviour of a learning model with different
hyperparameters, it is essential to choose beneficial hyperparameters for the problem. Although
it is often not trivial which hyperparameters are beneficial it is useful to try and test different
hyperparameters1. This procedure is known as hyperparameter optimization or hyperparameter
tuning (Thornton et al., 2013).

Also, metamethods extend the variance of learning models. A metamethod takes one base
learning model and additional parameters as input. For example, such parameters pre-process
the instances or aggregates predictions from different trained models of the same type. Another
opportunity is to ensemble learning models and aggregates the predictions afterwards (Thornton
et al., 2013).

The linear model and linear regression A very common learning model class is the linear
model. It is based on vector space models. Let x be an instance. Hence, it is a vector, suppose
the dimensionality is d. Furthermore, w is a given weight vector of dimensionality d + 1. The
weight vector can be a result from a learning pre-process (training). Additionally, Θ is a self
defined link function. The general formula is given in Equation 2.1 (Abu-Mostafa et al., 2017).

h(x) = Θ
(

w0 +
d∑

i=1
wi · xi

)
(2.1)

w0 is the bias term, because it is independent of the instance (Abu-Mostafa et al., 2017).
For binary classification Θ in Equation 2.1 is the sign function: Θ(s) = sign(s). For regression,
Θ can be the identity function Θ(s) = s. And for probability estimation, Θ can be the logistic
function (2.2).

Θ(s) = es

1 + es
(2.2)

The linear model is called linear, because the prediction depends linearly on x. A linear
hyperplane (depends on w) divides the positive and negative class in the case of binary classifi-
cation. Figure 2.3 shows this.

Support Vector Machines (SVM) are one of the most essential classifiers (regressors)
(Meyer, 2018) of a linear model. SVM base on the idea to maximize the margin of the hyperplane
– the best possible separation among the classes. That means to find a hyperplane which has
the largest distance to those instances which are closest to instances of another other class
(2.3) (Witten et al., 2017).

max
w

(
1
||w|| min

((x,y)|x∈X ,y∈Y)

(
y

(
w0 +

d∑
i=1

wixi

)))
(2.3)

Instances with the smallest distance to the hyperplane are called support vectors. Only those
instances determine the location of the hyperplane – figure 2.4 shows that fact.

1 this can be done by trying manually, for example with the grid search or by tools like Auto-Weka (Thornton
et al., 2013)
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x1x1 wrongly classifiedwrongly classified

x2x2

Transformation:
Φ(x) = (x1, x1⁴)

Feature selection:
Remove feature x2

x1x1

Hyperplane

Hyperplane

Figure 2.3: This figure represents the linear model in the case of binary classification. Not all
instance sets are linearly separable like in the left diagram. There is no possibility to set the line
such that all squares are on one side and all circles on the other side. The feature transformation
can help to convert the instance set into a linearly separable one. The transformation allows
“bending” the line in the plot before the transformation (left).

x2x2

x1x1

Class Separation

Margin

Margin

Support Vectors

Figure 2.4: This figure shows an SVM in its instance space. Squares are instances of the first
class, circles or instances of the second class. The closest instances to the hyperplane (support
vectors) are at the border of the margin.
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Additionally, it is possible to choose the soft margin approach. In this approach, it is possi-
ble to have instances inside the margin. Instances which violate the margin (inside the margin
or wrongly labelled) are considered in a penalization term. The hyperparameter c controls the
weight of the penalization term.
On the one hand, SVM consumes many resources at the training stage (especially the hyperpa-
rameter tuning) (Meyer, 2018). On the other hand, SVM have linear complexity and are efficient
with a large feature set. Additionally, the user can use his kernel function in SVM. However,
the practise shows that this tends to be domain specific (Witten et al., 2017).

Selected classifiers There are several further classifiers, some of them are presented in this
paragraph.

Majority voting predicts that class which occurs most often in the training instance set.
The prediction is independent of the instance itself, which should be classified. Obviously, this
approach is trivial and has, in general, no use except as a baseline.

K-nearest neighbour (Khan et al., 2016) (k-NN) is a lazy learning model. That
means that there is no computation at all during the training step except to store the instances
in a set. The computation takes place in the step where the class of a new instance should be
predicted. Firstly, the k nearest instances, called neighbours, are selected. The determination
requires a distance function which is a hyperparameter like the k, too. An aggregation function
aggregates the known classes of the neighbours in the next step. The aggregation function is
a hyperparameter, too. The return value of the aggregation function is the prediction. Some
implementations weight the influence of a neighbour with its distance. K-nearest neighbour
delivers promising results, but it suffers from imbalanced instance sets. If a class is only rarely
represented in the training instance set, the model will rarely or never predict this class, no
matter which instance the input is. K-nearest neighbour can be used for regression problems,
too.
A similar learning model is K-Star (Cleary and Trigg, 1995)

Decision Trees (Quinlan, 1986) are trees which contain a rule in every node except
the leaf nodes. A leaf node contains a class prediction. A rule is a feature-based test with a
branch for each possible outcome. An example is a threshold test like x1 > 0. There are two
outcomes (true or false), so two branches. A new instance starts with the first rule in the root,
and according to the result, the instance is redirected to a specific node in the next level of the
tree. The procedure runs until the instance reaches a leaf. Not every single feature is requested
during a prediction process. It can happen that a decision tree never requests a certain feature
after training. Moreover, a rule of thumb is to keep a decision tree simple – avoid many nodes.
If two decision trees fit the training set with the same accuracy, the developer should take the
simpler one. Decision trees are fast and very accurate. Features with a low impact are pruned
out. This behaviour is conducive for natural language processing. However, the drawback is
that only feature-value combinations (paths in the tree) decide over the prediction and not, for
example, feature interactions directly.
Random forest (Liaw and Wiener, 2002) is a metamethod which aggregates decision trees. The
algorithm trains many decision trees based on a randomly chosen feature subset (across feature
types, too). During a prediction of the class of a new instance, every single decision tree calculates
its prediction. The final prediction is the majority vote2. Random forest outperforms well, in

2Other aggregation methods can be used, too. Random Forest is available for regression problems, too (Thorn-
ton et al., 2013)
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general, but it performs worse if some features are dominant. It is robust against overfitting.
Overfitting means to be very good in the training data but worse in predicting non-training-data
instances.

Evaluation and validation

The instance set is often only a small portion of all possible instances. Nevertheless, a single
instance can be a very complex vector which has been computed over several steps. Machine
learning, especially in combination with natural language processing, needs evaluation and val-
idation like in nearly all disciplines in computer science.

Effectiveness gives information about the correctness of an output by an algorithm (evalua-
tion) (Wachsmuth, 2015). In the case of binary classification like stance classification there are
positive instances and negative instances. In this case all possible instances can be divided into
four classes (Wachsmuth, 2015):

TP True positives: positives instances classified positive by the algorithm

TN True negatives: negative instances classified negative by the algorithm

FP False positives: negative instances classified positive by the algorithm

FN False negatives: positives instances classified negative by the algorithm

One measurement for effectiveness is the accuracy a. The accuracy is the ratio of correct decisions
(Equation 2.4) (Wachsmuth, 2015).

a = |TP |+ |TN |
|TP |+ |TN |+ |FP |+ |FN | (2.4)

Another measurement is the precision and recall. Precision p measures the ratio of output
information which is inferred correctly. Recall r calculates the ratio of all correct information
which is inferred (Wachsmuth, 2015). The requirements often ask for high precision and high
recall. Therefore, the f1-score defines the harmonic mean of precision and recall. An overview
gives Equation 2.5.

p = |T P |
|T P |+|F P |

r = |T P |
|T P |+|F N |

f1 = 2pr
p+r

(2.5)

In classification with more than two classes the accuracy and f1-measure can be used, too. The
measurement computes for every class the scores in that case that the selected class is the first
one and all other classes are combined in the second class. Now, there is the binary classification
problem again. The scores can be aggregated, for example, by averaging.
An algorithm in natural language processing often contains one or more machine learning models.
We define the error function e(y, ŷ) to measure the effectiveness of a learning model for a single
instance x. y is the ground truth output, ŷ the predicted one. A common error function for
regression problems is the squared error function (Equation 2.6) (Abu-Mostafa et al., 2017). The
mean squared error defines the error for an instance set by averaging the squared error function
over all instances. This error is called Ein.

e(y, ŷ) = (y − ŷ)2 (2.6)

The problem is that the instance set is only a small portion of all possible instances. Often,
the error inside the labelled instance set is different from the error outside this set (Eout).
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One problem is overfitting. Overfitting occurs by producing a classifier or regressor, which
fits the training data too tightly (Witten et al., 2017). In other words: overfitting fits the
noise (difference of the label to the ground truth target function), too (Abu-Mostafa et al.,
2017). A complex target function or noisy data increases the danger of overfitting. Many
degrees of freedom for the machine learning algorithm increase the danger of overfitting, too.
A huge number of instances decrease the difference between Ein and Eout (Abu-Mostafa et al.,
2017). Hence, to avoid overfitting, the machine learner must gather lots of instances or – as an
additional option – must regularize the machine learning algorithm, for example with a small
c-hyperparameter in support vector machines.
Validation determines Ein and gives a clue about Eout. To present a reliable result, a machine
learner should divide its instance set into the training set, validation set and testing set. The
testing set measures the error (or accuracy / f1-score of the whole algorithm) after training
and freezing the learning model. The training set is to train a learning model. The validation
set is to validate the learning model after training and can be used for a good hyperparameter
estimation and additional training iterations. Therefore, the validation set influences indirectly
the learning model (Abu-Mostafa et al., 2017).
A common method for giving a clue on Eout is the n-fold-cross-validation. Often, n equals ten.
In the n-fold-cross-validation, the instance set is divided into n sets of equal size. Then, in n
iterations, n learning models are trained with n − 1 of these sets. The nth set estimates the
error. In the end, every set is validated once. In the end, the method combines all sets for the
last training step. The final error is the average of the n estimates (Abu-Mostafa et al., 2017).

Efficiency is a second important measurement. It is defined by the run-time (also called
running time) of an algorithm to calculate its output (prediction) (Wachsmuth, 2015). The
run-time in this thesis is always the average time to process a single claim.

2.1.2 Text analysis and natural language processing

The approach of this thesis presents different ways pf dealing with natural language. Hence,
natural language, text/ strings, are not useful for computations for the computer. Humans
can understand their meaning, but for computers, it is just a stream of characters. Hence,
algorithms must analyse the text first. Often, the text analysis is organized in a pipeline: in-
formation extraction, text classification, and natural language processing (NLP) (Wachsmuth,
2015). We assume an already classified text. We assume arguments, separated in the conclu-
sion (claim) and the remaining part of the argument. Hence, this thesis only takes a view to
NLP. NLP analyses the input text, identifies and structures relevant information (Wachsmuth,
2015). NLP faces different problems in natural language, for example, the problem of ambigu-
ity (Wachsmuth, 2015).
Often, NLP is organized in pipelines, too. In term of reusability, there are a bunch of algorithms
(single executable steps) which analyses the text regarding a specific entity. Hence, for example,
there are algorithms which detect sentences, algorithms which detect words or dates. Every
algorithm (primitive analysis engine) has specific prerequisites and a specific result. An appli-
cation engineer now has the possibility to combine primitive analysis engines in a pipeline to
get an aggregate analysis engine. Figure 2.5 sketches an aggregate analysis engine. One popular
framework which supports this approach is Apache UIMA3 (Ferrucci and Lally, 2003).
The revealed information from analysis engines is stored in annotations. An annotation repre-
sents an instance of a particular type of information. An annotation covers the whole text or a
specific span of text (Wachsmuth, 2015).

3https://uima.apache.org/
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aggregate analysis engine

Primitive analysis 
engine:
InfexBA-

SentenceSplitter

Primitive analysis 
engine:
InfexBA-

SentenceSplitter

Primitive analysis 
engine:

InfexBATokenizer

Primitive analysis 
engine:

InfexBATokenizer

plain document analysed document:
sentences and tokens

Figure 2.5: This figure shows an example of a pipeline in natural language processing. The
pipeline also called aggregate analysis engine has in this example two primitive analysis engines4.
One of them detects sentences. The other detects tokens which are mainly single words.

NLP and Machine Learning

Some NLP tasks follow strict rules. For example, the task of splitting a text into words is
basically to split whenever a white space occurs. However, there are other NLP tasks which are
more complicated. One example is to find out the sentiment of a sentence or a word. For some
problems exist some well know and proper functions, but for other problems, a machine learning
approach might be helpful. There is the possibility to use machine learning approaches in NLP.
Hence, a primitive analysis engine can use a machine learning approach (Wachsmuth, 2015).
The creation of a new primitive analysis engine which is based on machine learning requires a
text corpus. A text corpus is a collection of texts. The corpus should include the ground truth
which an analysis engine should detect or predict. It is recommended to split the corpus into
training and test data. After that, already existing analysis engines derive required annotations.
This derivation is the part of text analysis. With the help of the annotations follows the next
step: the feature engineering. The computed features are the input for a specified learning
model. This model is saved after training and testing. The saved model can become a part of a
new primitive analysis engine now. This analysis engine includes feature computation as well.

Word embeddings describe the technique to transfer words (or phrases) into a vector rep-
resentation. Therefore, related models are called Word2Vec-models. The vector representation
is an output of machine learning procedures and is helpful for machine learning which uses that
vector representation. The aim of the training is to group similar words. The vector representa-
tion should be similar. The research chooses neuronal network approach with skip-gram-models
for that (Mikolov et al., 2013).
Collecting all words from the training text and encoding every distinct word with the one-hot-
encoding is one fundamental way to put it into practice. Assuming that our input text contains
x distinct words, then every word is encoded with a vector of x dimensions, which consists only
zeros and one times the number one. Now, the learning procedure feeds a neuronal network
with y layers with the encoded text. The goal is that the network learns to predict the right
probability that two words appear in a specific window together in the training text. Each out-
put neuron encodes the probability to that word which is encoded with the one-hot-encoding on
the position of the output neuron. The output vector for each word with y dimensions consists
of the weights of the y layers of the trained neuronal network.
Besides to the semantic similarity-functionality, word embeddings have further advantages like
encoding many linguistic regularities and patterns. For example, the trained Word2Vec-model
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likely fulfils approximations like Equation 2.7 (Mikolov et al., 2013). Hence, this thesis uses the
described technique, too.

vec(Berlin)− vec(Germany) + vec(France) ≈ vec(Paris) (2.7)

Brief introduction into the structure of natural languages

Figure 2.6 represents the different zoom levels of natural language. The highest level is the text
level. A natural language process analyses one or more documents. When the analysis engine
zooms in, then the paragraphs are in focus. Every text contains one or more paragraphs. The
next zoom level contains sentences, which are often used in analysis pipelines. One sentence
contains one or more clauses. Clauses are the smallest grammatical unit that can express a
complete proposition. Every clause contains one or more phrases. “A phrase is a contiguous
sequence of related words, functioning as a single meaning unit.” (Jurafsky and Martin, 2008).
Phrases can be nested. Analysis engines which detect phrases face the problem of structural
ambiguity (Jurafsky and Martin, 2008). There are five types of phrases: the noun phrase,
adjectival phrase, verb phrase, adverbial phrase and prepositional phrase. Phrases are called
constituents, too. The next zoom level is the token level which contains mainly single words.
Additionally, punctuation marks are tokens, too. Analysis engines do not annotate white spaces
as tokens. There is the possibility to zoom into words. Basically, words are a chain of syllables.
The deepest level is the character level. Every token contains one or more characters/ symbols.
One of the most impressive level is the token level. A token annotation can be extended with
additional analysis information. Every word contains single characters. A word contains units,
the so-called syllables. For example, the syllables of the word speaker are spea and ker. To
come back to the token level, every word contains exactly one morpheme. A morpheme is the
smallest linguistic unit with a meaning or grammatical function (Jurafsky and Martin, 2008).
For example, the morpheme of the word speaker is speak. Another linguistic unit of a word is its
stem. A stem is the part of a wordform that never changes. The stem with its affixes (suffixes,
prefixes, infixes, circumfixes) results in the whole word. For example, the stem of rewording is
word. The next additional information can be the lemma. Lemma is called lexem, too. The
lemma is the dictionary form of a word. For example, the lemma of was is be.
Important additional information for a token is the part of speech (POS) tag. The POS tag
marks the word class (lexical category) or syntactic category of a word in a sentence, respec-
tively (Jurafsky and Martin, 2008). POS tags reveal a lot about a word and its neighbour.
Furthermore, it is a crucial aspect of parsing to detect and classify, for example, phrases or to
build dependency trees of the words in a sentence (Jurafsky and Martin, 2008). Analysis engines
which add POS tags often have a closed word classes set like the Penn Treebank tagset5. The
amount is fixed as in opposite to open word classes sets. Closed word classes sets are not adapt-
able to changes in the language. A typical abstract word class is, for example, the nouns. This
class has, for example, the specific classes “single noun”, “plural noun” and “proper noun”. A
problem which POS tagger faces is the ambiguity. Most word types are unambiguous (80-86%).
The issue is that ambiguous words are often widespread words. In the end, the POS tagging
is not trivial for 55-67% of the tokens in running texts (Jurafsky and Martin, 2008). There
are different solutions for that problem: the simplest one is the most frequent class tagging
(accuracy: 92%). Better are sequence classifiers. These classifiers are based on hidden Markov
models, for example. A third possibility is to use machine learning.

5https://www.sketchengine.eu/penn-treebank-tagset/
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Figure 2.6: This figure shows the structure of natural language.
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Word (phrases) relations: the WordNet: Fellbaum (1998) presented the WordNet R© of
the Princeton University6. The WordNet is an extensive lexical database for the English lan-
guage. We will use this freely available lexicon. It is based on sets of cognitive synonyms
that express a concept uniquely. These 117,000 sets are called synset. For example, the synset
{God, Supreme Being} represents the concept of a ”supernatural being conceived as the perfect
and omnipotent and omniscient originator and ruler of the universe; the object of worship in
monotheistic religions“. Each synset is like a node in a graph. Semantic relations between
synsets represent edges. Therefore, the database is called WordNet. There are several relation
types: hyperonymy/instance (superordinated synsets including specific persons, countries and
geographic entities), hyponymy / has_instance (subordination), meronymy (the part-whole rela-
tion) and antonymy (direct contrastive synsets). For example, the synset {God,Supreme Being}
has as an instance which describes the name for the God of the Old Testament (Judaism, Chris-
tianity). This synset contains amongst others the word “Yahweh”. Figure A.1 shows examples
of semantic relations which we retrieved from WordNet.
The WordNet takes some general POS-tags of words into account. Also, the lexicon provides
some additional information to each synset, like example sentences and frequency counts. How-
ever, the ability to search through the WordNet-graph and retrieving synonyms are enough for
this thesis.

2.1.3 Computational argumentation and stances

Computational argumentation is basically the computational analysis and synthesis of argu-
ments in natural language and argumentation. Often computational argumentation is based on
empirical data (Wachsmuth, 2015). Computational argumentation includes detecting, structur-
ing and indexing arguments. Another task of computational argumentation is to match and
rank arguments regarding a specific search query like in args.me (Wachsmuth et al., 2017).
However, this thesis does not dive into argument mining and argument ranking.

Computational argumentation deals with argumentative texts. Such a text contains one or
more arguments. Each argument contains one or more premises and the conclusion – the central
claim. The claim is the most important part of an argument (Stede and Schneider, 2018). How-
ever, its position can be at the beginning or at the end or somewhere else. The premises argue
all in all for the conclusion. However, not all premises must directly support the conclusion. An
argument can include attacking claims, too. The goal of including such claims is to refute or
weaken them (the relation label is “undercut”) (Stede and Schneider, 2018). Arguments can be
nested. Additionally, it is possible to build a chain of arguments. The stance of an argument
represents a two-sided position of the writer regarding a given topic (Stede and Schneider, 2018).
A topic is a central phrase or statement in a debate or an argumentative text like a title. If an
argument argues for the topic, then it is a PRO argument. Otherwise, if an argument argues
against the topic, then it is a CON argument. Hence, stance classification is a for/against clas-
sification (Stede and Schneider, 2018).
Relating to stance classification, it can be helpful to take a view on the sentiment and opinion
term and the target term. IBM defined the target of a claim of an argument as the central
noun phrase, about which the claim or argument, respectively, makes a positive or negative
statement (Bar-Haim et al., 2017a). For example, the target of the claim “Therefore, there
are many hints for God’s existence” is God’s existence. The sentiment “is a type of linguistic
subjectivity, specifically positive and negative expressions of emotions, judgements, and evalu-
ations” (Somasundaran and Wiebe, 2010). The sentiment sketches the polarity, the personal

6https://wordnet.princeton.edu/: it is usable online, too, at http://wordnetweb.princeton.edu/perl/webwn
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opinion on a topic. Therefore, the sentiment is a clue for the stance, but the sentiment alone is
not sufficient for stance classification (Mohammad et al., 2017). Consider the claim “The belief
in God’s existence is an outdated idea.” The sentiment is negative. The personal opinion of the
author is contrastive to the topic “God’s existence” and in that case, this claim is the conclusion
of a CON argument. If the topic is atheism, then the sentiment is still negative, but now the
argument argues for the topic. Therefore, the stance is PRO and not CON. Furthermore, an
author can express his stance without sentiment.

This thesis defines stance classification as a task to classify the stance of an argument (this
paper has an inside view on the claim of the argument) towards a topic. We assume that the
argument is related to the topic. Therefore, it is a binary classification problem. An algorithm
should compute this classification. This NLP task is called stance detection if there is no as-
sumption that the argument is related to the topic (Stede and Schneider, 2018).
Stance classification is not a trivial task. Therefore, many types of research exist about the
topic. This thesis sketches some approaches in the next Section (Section 2.2.2). The approach
of this paper is described in Chapter 3.

2.2 Related work

The argument search needs stance classification in order to sort each argument to the correct
side: PRO and CON. This thesis is about stance classification in argument search. Therefore,
Section 2.2.1 gives an overview of the argument search (specifically for the used search engine
args.me). Section 2.2.2 sketches a part of already existing approaches for stance classification.

2.2.1 The argument search

Many questions do not have only one single correct answer. There are lots of controversial
topics like the existence of God, feminism and more. Traditional search engines do not offer
explicitly an overview of existing opinions likewise arguments for and against the controversial
topic. Computational argumentation improves the search experience for opinion summarisation
and decision making (Wachsmuth et al., 2017).
The argument search fills this gap. Wachsmuth et al. (2017) developed a search engine args.me.
The user can enter a query. The engine retrieves arguments which match the query (the topic).
Furthermore, the engine ranks the arguments and presents them. The presentation includes a
labelling in PRO and CON arguments. The user can switch between the Pro vs Con View and
the Topic Space View. Figure 2.7 shows a screenshot of the current implementation.
The contributions of Wachsmuth et al. (2017) are various. They present an extensible argument
search framework. This framework is related to the research on argument search on the web.
It includes a common argument model. Each argument has an ID, a conclusion (the claim),
and a list of premises. Each premise has a stance label towards the conclusion. Additionally,
each argument has a context. One example is the URL of the discussion which includes the
argument. Model extensions are allowed but not necessary in this thesis. Another contribution
of Wachsmuth et al. (2017) is an argument search index. The index provides 291,440 arguments.
Wachsmuth et al. (2017) claims that this index is the largest argument resource. The arguments
were crawled from online debate portals7. The final contribution of Wachsmuth et al. (2017) is

7The debate portals are idebate.org, debatepedia.org, debatewise.org, debate.org and
forandagainst.com. The conclusion is the debate title in the first four web sites. In the last case, it is
the claim. The crawler can directly retrieve the stance label of each premise to the conclusion from the discussion
in the debate portal (Wachsmuth et al., 2017)
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Chapter 2. Foundations and related work

a prototype of an argument search engine args.me. This thesis refers to that search engine and
provides a new stance classification algorithm for this search engine.
A user can query a word/topic standalone like God’s existence. In that case, PRO arguments
argue for the topic, CON arguments against it. Furthermore, a user can enter a query which
includes already a stance like God exist, or God does not exist. The second query should invert
the two sides. A third option is a request for comparison like theism vs atheism (Wachsmuth
et al., 2017). However, this thesis focuses on the first two query types.
The implementation of stance classification of the retrieved arguments in args.me is only a
simple heuristic until yet. Given a premise and a conclusion which is related to the search
query, the stance label is copied from the stance label from the premise to the conclusion.

Figure 2.7: This figure is a screenshot of the search engine args.me. We added three marks
into the picture. This view appears after entering a search query (the topic). The search engine
matches arguments to the topic and presents PRO and CON arguments.

2.2.2 Existing approaches for the classification of stances

An important example in the early work in stance classification comes from Somasundaran
and Wiebe (2009). They focussed on online debates. More precisely, their corpus is restricted
to two-sided debates for products and competitors, for example, Blackberry vs iPhone. They
mined the web to learn associations and concession relations. Additionally, they extracted topic
and subjectivity clues. In the end, they formulated the classification task as an Integer Linear
Programming problem.
Other researchers work with the same data source. The interactions of posts in a discussion
thread come into play. For example, some researchers emphasised the role of rebuttals in the
interactions. Other researches built a complete network of for and against groups of users (Stede
and Schneider, 2018).
Hasan and Ng (2013) took a view on ideological debates from another debating portal and
investigated the interactions between posts. Each user has a particular stance towards a topic.
Hence, there are author constraints. This knowledge was used with internet query search,
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2.2 Related work

additional to n-gram-features, syntactic features like punctuation cues and semantic query. In
the end, Hasan and Ng (2013) presented two helpful patterns which they combined in an Integer
Linear Programming inference problem:

• Interaction patterns: mostly a post is followed by a reply with the opposite stance in a
debate thread

• Ideology patterns: The opinion of an author is not independent of his/her opinions to
other topics. For example, Hasan and Ng (2013) found out that the probability is high,
that, if an author argues for gay rights, he has a positive stance towards marijuana.

Hasan and Ng (2013) reaches an accuracy of 71-76% in predicting the right stance in online
ideological debates.
A further example of the stance classification of online debates is the approach by Sridhar et al.
(2014). This approach combines linguistic features with features based on the network structure.
Therefore, the underlying relationships between posts, including stance labels, and users help to
classify the stance. This approach uses the probabilistic soft logic model for classification. An
advantage of this model over some machine learning approaches, which are like a “black box”, is
the production of weights of symbolic rules. This behaviour is useful for error analysis. Sridhar
et al. (2014) reach an average f1-score of 0.74.

Faulkner (2014) analysed the stance of student essays and developed an automatically essay-
stance-classifier. He claimed that the relationship between linguistics and NLP is an on-again-
off-again affair and presented a linguistic approach which makes use of linguistic subtleties. In
detail, his approach has two key ingredients:

• Part-of-speech-generalised dependency subtrees: the approach captures the relationship
between a stance or attitudinal expression (lexicon based – words or phrases) and the
target of the expression. A standard syntactic parser is used to reach that goal. The
extracted dependency subtrees symbolise stance-attitude profiles

• Prompt-topic-features: motivated by related work in aspect-based sentiment analysis, the
approach considers the relation of the prompt of an essay to its content. For that, the
approach generates a set of essay words which are semantically related to words in the
prompt. A Wikipedia link-based measure is used for choosing and scoring such words.

Faulkner (2014) trained an SVM and evaluated his topic-word model. For training and testing
he uses a set of 1135 stance-annotated essays. The result is an overall accuracy of 82%.

A further auspicious approach is presented in Section 3.1. This approach is the base for the
strategy which is presented in this thesis.
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Adapting Stance Classification to
Argument Search

3
This chapter gives an overview of the approach of this thesis. The approach is inspired by the
approach of Bar-Haim et al. (2017a), which will be presented in Section 3.1. This approach is
labelled as the approach of IBM. The modular idea of this approach, including the derivation
of the central stance classification formula is the core idea if this thesis, too. Therefore, Section
3.1 describes the base.
Hence, the scenario of IBM is not the same as the scenario in argument search. Section 3.2
summarizes the differences and gives an insight into the importance of handling the differences.
Section 3.2 is the reason for Section 3.3. This section explains the concepts of the necessary
adaptations. Hence, this is the point where new research ideas come into play, and the discovery
of stance classification in argument search starts profoundly.

3.1 Description of the approach of IBM

The section summarizes the paper of Bar-Haim et al. (2017a). They presented a novel modular
approach of stance classification.
The authors decomposed the stance classification into three tasks:

1. Claim Target Identification

2. Claim Sentiment Classification

3. Contrast Classification

The approach of IBM calculates the stance of a claim towards another claim (the topic). Consider
the claim c = “faith in God is beneficial” and the topic t = “atheism is not the truth”. IBM
assumes a claim target xc and a topic target xt. A target is a phrase the claim contains.
Furthermore, the text which contains the target makes a positive or negative assertion about
it. On the base of this assumption, IBM defined the claim sentiment sc ∈ {−1, 1} and the topic
sentiment st ∈ {−1, 1} to its target. The value −1 indicates a negative sentiment towards the
target and 1 a positive one. In the case of the example, xc = faith in God and therefore sc = 1.
For the topic, xt = atheism and hence st = −1.
Additionally, IBM defined a contrast relation between xc and xt, expressed with R(xc, xt) ∈
{−1, 1}. A contrast relation of −1 means that the two targets are semantically contrastive to
each other. This is the case in the example: faith in God implies the opposite stance towards
atheism. Therefore, R(xc, xt) = −1 holds in our example. Otherwise, a contrast relation of 1
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3.1 Description of the approach of IBM

means consistent targets. A consistent topic target of faith in God would be theism and, in the
extended sense, for example, God exists, religion and Christianity. The contrast relation is the
most challenging subtask.
The calculated values produce the final output, the stance. The output follows a simple formula
(Equation 3.1).

Stance(c, t) = sc · R(xc, xt) · st (3.1)

In our example the formula concludes that the claim faith in God is beneficial is the conclusion
of a PRO argument towards the topic atheism is not the truth (1 · −1 · −1 = 1). This inference
is true and was not a difficult task for the modular approach. This assertion holds in contrast
to some other stance classification approaches which would face a difficult task in this case.
Until now, all introduced number values, including the output, were presented as binaries:
the values are exclusive −1 or 1. IBM presented a continuous variant, too. In that model,
Stance(c, t),R(xc, xt), sc, st ∈ [−1, 1]. Real values have several advantages: the continuous
model allows the scientist to include the confidence of a value prediction. If a value is 0 or
nearly 0, then it means that the algorithm is very unsure about its prediction. Therefore, the
output is not reliable. An example is the calculation of the contrast relation between faith in
God and Buddhism. If the absolute value is 1 or nearly 1, then the algorithm is very confident
about its prediction. Another example is the calculation of the contrast relation between theism
and atheism. This gradation is useful for a ranking afterwards. Another use case is to introduce
a threshold τ ∈ [0, 1]. In this case, only such claims are outputted which fulfils |Stance(c, t)| ≥ τ .
This filter can increase accuracy enormously.
Figure 3.1 sketches the continuous model which this paper adapts for the argument search.

3.1.1 The three subtasks in detail

Each subtask has its own challenges and solutions for these. This subsection presents mainly
the approaches of Bar-Haim et al. (2017a) to these subtask. Improvements of Bar-Haim et al.
(2017b) are already included.

Claim Target Identification

Claim Target Identification is a known problem in natural language. Ranade et al. (2013)
extracted the targets by analysing the full dependency parse of utterances in online debates.
Wojatzki and Zesch (2016) proposed to model implicit argumentation and covered the topic of
target identification. They presented a semi-automated, bottom-up approach by using associa-
tion words between topic and utterance. They claimed that selecting the most explicit target is
not the best choice for overall stance analyses.
IBM decided to model the identification problem as a machine learning problem. They used
a regularised logistic regression classifier for the task for labelling phrases with a confidence
value for being the target. To do that, they first extracted noun phrases with the help of a
constituent parser1. Each noun phrase was a candidate for being the target. In the next step,
IBM extracted features for the classifier from each candidate. They used syntactic and positional
features. Also, they searched the candidate in Wikipedia to find out whether it appears as a title
or not. They included dependency relations connecting the candidate to any sentiment phrase
in the rest of the claim. The last feature type was the topic relatedness. Three different values
were calculated: morphological similarity, paths in WordNet and cosine similarity of Word2Vec
embeddings.

1more precisely, the ESG parser
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Figure 3.1: This figure represents a broad overview of the stance classification approach of
IBM (Bar-Haim et al., 2017a). The stance classifier gets two claims as input in natural language.
One of them is a conclusion of an argument, the other is the topic claim. Three main components
infer knowledge out of the strings which other steps use later on. The general flow is to extract
the target and then to determine the sentiment towards the target and to calculate the contrast
relation between claim and topic. The last step is to compute the Equation 3.1.
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Claim Sentiment Classification

Sentiment Classification is a very known problem in natural language. There are many ap-
proaches. Some of them use a bag-of-word-learning-strategy (Pang et al., 2002); other ap-
proaches use already existing sentiment lexicons. A famous lexicon is the opinion lexicon of
Hu and Liu (2004) (Bar-Haim et al., 2017a). This lexicon contains 6789 words and separates
words in a list with positive sentiment and a list with negative sentiment. Another example is
the sentiWordNet which stores for each word and for each sense of it a sentiment-positive-score
and a sentiment-negative-score in WordNet (Ranade et al., 2013). All in all, the advantage of
lexicon-based sentiment analysis is that they prevent overfitting. The disadvantage is that they
do not consider the context of words with a sentiment. Hence, because of dependencies and
ambiguous words, this can lead to wrong results (Khan et al., 2016).
Wang et al. (2010) introduced the aspect-based sentiment. Socher et al. (2013) introduced recur-
sive neural networks for semantic linguistic compositions. Further ideas analysed the discourse
structure, used argument-related models or the sentiment flow or have a semantic constitution-
ality view. Many approaches use supervised machine learning (Khan et al., 2016).

The main difference between the existing approaches and the approach of IBM is IBM
calculates the sentiment towards the target of the claim. The previous approaches calculate
the overall sentiment, for example, of a claim. In most cases both sentiments are consistent.
However, in the following claim, the sentiments are not equal: “Right persons love nature and
therefore avoid aeroplanes” has a positive sentiment. Consider the target “aeroplanes” now.
This claim has now a negative sentiment towards its target.
The approach of IBM is lexicon-based. First, they match words with sentiment2 from the opinion
lexicon of Hu and Liu. In the next step, they consider the context of sentiment words with the
sentiment shifter application. If a word from a sentiment shifters list is in front of a sentiment
word, the application inverts its sentiment. The last step points out the target: a distance
function weights each sentiment value regarding its distance to the target. If d is the distance in
tokens, then the final sentiment s of a word is s 7→ s · d−0.5. For the final sentiment prediction,
the Equation 3.2 was used. pc is the weighted sum of positive sentiments in the claim and nc

the same for negative sentiments. Analogously, pt and nt are defined for the topic.

sc = pc − |nc|
pc + |nc|+ 1 st = pt − |nt|

pt + |nt|+ 1 (3.2)

Later IBM presented an improvement in the sentiment matching step. The aim was to extend
the opinion lexicon to cover more sentiment words. They trained an SVM classifier to predict
the sentiment polarity for obscure words using word embeddings. The resulting accuracy was
90.5% and led to a sentiment lexicon with 938,559 words. Because of the large size, they con-
sidered to compress it by filtering using relations on a WordNet.

Until now, the approach only takes into account the isolated claim. Therefore, Bar-Haim
et al. (2017b) presents an extension for the claim sentiment classification which suggested con-
textual features. The assumption behind the features is that the neighbouring texts tend to
agree on the sentiment. Therefore they trained an SVM classifier on these contextual features.
They suggested the following contextual features types:

2The sentiment value is -1 or 1
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Wikipedia Header Features: Often, claims appear in Wikipedia articles. The headers of
an article which includes the claim can reveal something regarding the sentiment of a claim. If
the claim appears in the Criticism-section, the sentiment is probably negative. In the opposite,
if the claim appears in the Advantages-section, the sentiment is probably positive. Therefore,
IBM takes the sentiment of the header of the section, the subsection and the sub-subsection as a
feature. Also, they add the difference between positive sentiment words and negative sentiment
words in each header as features.

Neighbouring claims and sentences: IBM stores the surrounded text to each claim. This
is intuitive in an argumentative text: the central claim is the conclusion, and the surrounded
text contains the premises, which are themselves claims, too. 88% of the claims shared the
majority polarity. They cluster successive claims until a potential polarity flip term was found
like however, although and in contrast. They add the sum of the sentiment scores over all other
claims in the cluster of the predicted claim as a further feature.

Contrast Classification

Contrast Classification in the sense of two targets is not a common problem in computational
linguistics until now. IBM suggests the following approach: first, they generate anchor can-
didates from the claim and the topic. An anchor candidate is every word. Additionally, they
consider phrases as anchor candidates. The aim was to have a strong association to debate topic
and, in addition, semantic relation between paired anchors candidates, to find all consistent and
contrastive cues. Hence, in the next step, they selected the main anchor pair. An anchor pair a
combination of an anchor candidate from the claim ac and from the topic at. The Equation 3.3
determines the choice.

(ac, at) = arg max
∀i∈{1,··· ,n},j∈{1,··· ,m}

w(aci) · |r(aci , atj )| · w(atj ) (3.3)

In Equation 3.3, w(x) represents the ratio of the frequency of x in articles that were identified
as relevant to the topic in the dataset of IBM and the overall frequency in Wikipedia. r is a
relatedness function which outputs a value in the range between −1 (contrastive relation) and 1
(consistent relation). IBM presented several relatedness functions which will be presented later
on in this thesis. The next component is the computation of the contrast score of an anchor
pair. A polarity function is used for that purpose which is lexicon-based. The formula for the
contrast score is in Equation 3.4.

contrast score(ac, at) = polarity(xc, ac) · r(ac, at) · polarity(xt, at) (3.4)

Now we have all parts for the final algorithm of contrast classification. First, the foremost K
anchor pairs are determined with the use of Equation 3.3. Then, the algorithm separately calcu-
lates the contrast score for each contrast relation function r (Equation 3.4) for the main anchor
pair. The algorithm calculates the value of the currently used relation functions of the other
K − 1 anchor pairs, too. These values, converted with the sign-function, are multiplied with
the contrast score of the main anchor pair. As the result, the algorithm calculates an extended
contrast score csr ∈ [−1, 1] for each contrast relation function. IBM treats each contrast score
as a feature. Then, IBM uses random forest classifier to get the final likelihood prediction that
xt and xc being consistent.
The following example helps to get a better understanding of the extended contrast score com-
putation. Consider the claim “Practical theory is useful” to the topic “Theoretical practise is
helpful”. Hence, assume that the main anchor pair is (theory, practise). Furthermore, con-
sider K = 2 and the next best anchor pair is (Practical, Theoretical). Hence, assume that the
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contrast score of the main anchor pair is 1 · −0.9 · 1 = −0.9 – theory and practice are mainly
contrastive. The relation function is for example r(Practical, Theoretical) = −0.9. In the ag-
gregation step, the result is −0.9 · sgn(−0.9) = −0.9 · −1 = 0.9. This result meets the example
because the targets are consistent.

IBM introduced the following contrast relation functions r(u, v) ∈ [−1, 1]3 which are used several
times in the contrast classification step:

• methods for single tokens

– morphological similarity

– cosine similarity in word2vec embeddings

– reachability in WordNet via synonym-antonym chains

– thesaurus-based synonym-antonym relations using polarity-inducing LSA

• method for phrases: this method is based on co-occurrence of the anchor pair with consis-
tent and contrastive cue-phrases in Wikipedia headers and query logs

3.1.2 Further contributions and experiments

Bar-Haim et al. (2017a) presented not only a novel approach but a meaningful annotated argu-
ment corpus, too. The researchers updated an earlier version, the IBM argumentative structure
dataset. The updated version contains 55 controversial topics, randomly selected from the de-
bate motions database at the International Debate Education Association (IDEA) website. Each
topic follows the tradition of British Parliamentary debates. Therefore, each topic starts with
“This house”. Each topic has a list of related claims. The 2,394 claims come from hundreds of
Wikipedia articles. Then, human annotators added information to the topics and claims: they
decided the stance giving a vote for the sentiment and the target. Besides that, the structured
dataset contains more information which is not necessary for this thesis.

Also, they did experiments with the help of their dataset. In the case of classifying all claims
(hence, the threshold Θ = 0 for predicting the stance) they presented improvements in accuracy
to some strong stance classification baselines. The full approach which Section 3.1.1 describes
without the extensions results in an accuracy of 0.632. This accuracy is equal to the baseline,
which uses unigrams and a sentiment SVM. However, a reduced variant of the approach is
slightly better: the reduced variant assumes that R(xc, xt) = 1 holds for all claim-topic-pairs.
Additionally, the sentiment of claim and topic is computed with a traditional sentiment algo-
rithm which does not take the target into account. However, by adding contextual features and
the idea of extending the opinion lexicon for Sentiment Classification, the accuracy of the whole
approach increases to 0.691. For coverage of predicting 60% or less of the stances (therefore there
is a noticeable threshold Θ which filters out predictions where the classifier is very unsure), even
without the extensions they reached the best accuracy with the full implementation of their
approach: an accuracy of 0.74 to 0.85. The accuracy values, which include the extensions, reach
0.78 to 0.95. Figure 3.2 plots the accuracy values.

3In the set of relation function are similarity measures, too. Such “relation functions” outputs values in the
range between 0 and 1
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Figure 3.2: This plot, which we created, represents the stance classification results of the ex-
periments by Bar-Haim et al. (2017a) and Bar-Haim et al. (2017b). The green lines shows the
effectiveness the full implementation of IBM. The blue line shows the effectiveness of the original
approach without the sentiment lexicon extensions and the contextual features. The coverage
infers the fraction of claims which the algorithm is forced to classify.

3.2 Differences in the case of argument search

The approach of IBM provides a solution for Stance Classification – this is the same task for
the argument search. An algorithm should correctly sort the crawled arguments into the PRO
or CON side. However, the database is not the same in both cases. The claims of IBM belong
to Wikipedia articles (Bar-Haim et al., 2017a) and are always sentences. Many of them are
linguistically complex and accurate because of the standards of Wikipedia. This is not the case
in args.me. The claims are conclusions of arguments from debate portals in this case. That
means: in most cases claims are titles of forum threads/ debates (Wachsmuth et al., 2017).
This source has in many cases an effect in that sense that the claim is just a keyword like
feminism instead of full sentences. Furthermore, claims can be questions or two phrases with
versus in between in rare cases. Additional challenges are spelling and punctuation mistakes
in many cases. Challenging conclusions from args.me are “Men Have Big Problems Too” or
“Abortion=Good!!!!!!”. Missing punctuations can lead to false parsing results4, for example.
Spelling mistakes can lead to cases where an algorithm cannot find a particular word. A third
challenge is a critical degree of missing context in some cases – more than in the IBM dataset case.
For example, args.me contains the conclusion “For And Against Is BETTER Than Google.”.
This conclusion seems strange without background knowledge. However, with the knowledge,
that this conclusion was on the web site http://www.forandagainst.com, the conclusion is
sensible. The user wants to debate whether this web site is better than the known search engine
for controversial topics. There is an attenuation for these challenges: in most cases the claims
of args.me are linguistically simpler than the claims of the IBM database. Half of all claims in
args.me have six to ten tokens (Ajjour et al., 2019).
Furthermore, not only the claims are different; the topics are different, too. IBM has a fixed

4For example constituency parsing: robust parsers can handle spelling and punctuation mistakes to a certain
degree. For example, the Stanford constituency parser delivers the same result for “Men Have Big Problems Too”,
and the corrected variant “Men have big problems, too.”
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set of topics. Each topic is a claim itself. In args.me the topics are user-defined search queries.
58% of all search queries contain only one word, and only 2% of all search queries contain more
than four tokens (Ajjour et al., 2019). Hence, the minority of search queries are sentences. The
majority are topic titles like “feminism”. The PRO side should argue for the topic and the
CON side against it. Also, the stance classifier in argument search should handle queries with
a comparison or/and an indicated stance in the end (Wachsmuth et al., 2017).
Furthermore, the argument search requires an extension of the central formula which IBM
presented. The algorithm must consider to classify the stance of an argument the stance of its
premises towards its conclusion, too. An opposite is the case of IBM: only the claim is decisive
for the stance. Hence, let S(a, c) the stance of the argument’s premises a towards its conclusion,
the claim c. If the author labels his text as a set of premises which support the conclusion, we
set S(a, c) = 1. Otherwise if there is an attacked relationship, we set S(a, c) = −1. Hence, the
final formula for the stance prediction of a certain argument’s premise is Equation 3.5.

Stance(c, t) = S(a, c) · sc · R(xc, xt) · st (3.5)

Besides, it is not possible to copy the contextual features which IBM suggested (Section 3.1.1).
Each claim in the IBM corpus comes from a Wikipedia article. Therefore, the claim itself is
directly inside the argumentative text. This context is not given in args.me (Wachsmuth et al.,
2017). The conclusion is not a part word by word of the argumentative text in many cases.

Another critical difference is the importance of efficiency. IBM have never written something
about runtimes or related terms in their two papers about stance classification. Hence, it
becomes clear that efficiency was second-rate in some points. One example is the contrast clas-
sification (Section 3.1.1). IBM did complex computations not only for one anchor pair but for
many pairs. Consider the claim “Exposure to violent video games causes at least a temporary
increase in aggression and this exposure correlates with aggression in the real world” and the
topic “This house believes that the sale of violent video games to minors should be banned” from
their corpus. The claim contains 23 tokens and the topic 15 tokens. The researchers suggested
to generate an anchor pair for every tuple of two tokens. Therefore, the algorithm must handle
23 · 15 = 345 anchor pairs. Also, IBM suggested considering phrases as anchor candidates.
Hence, in the end, there is a workload of over 350 pairs instead of one pair: the pair of claim
target and topic target. A second example is that IBM considered morphemes. Wachsmuth
(2015) shows that the Mate Tools, which can extract morphemes, takes notably more time
than some other basic primitive analysis engines. For example, the TT4J-TreeTagger needs
approximately one millisecond for tagging the lemma and POS of all tokens in a sentence. In
opposite, the Mate Tools needs approximately 21 milliseconds per sentences.
The challenge is to deliver results on-demand in argument search. A response time of more than
1000ms may interrupt the flow of thought of a user (Brutlag et al., 2008). If the response time
exceeds 3000ms, then the majority of users tend to choose another faster search engine (Brutlag
et al., 2008). All processing steps, including the stance classification, should meet that time lim-
itation. One request loads 20 arguments. Therefore, the stance classification of an argument’s
premise should not exceed 150 milliseconds, if the server uses no parallelisation for this task. A
computation time of 50ms or less can lead to a fluent workflow by using the search engine.

3.3 Concepts of adaptation
This thesis presents solutions for the differences which Section 3.2 describes. Hence, there are
several differences, so there are many single concepts to solve the problem. Table 3.1 gives an
overview over all adaptations which will explained by the following subsections.
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3.3.1 Concepts of handling claims and topics which are not linguistically
correct sentences

The conclusions of arguments are the classified claims in the argument search. Internet users
wrote these arguments including conclusions and forum thread titles. Therefore, Section 3.2
already describes that linguistic mistakes can occur. There are two approaches to face the
problem. One approach is to correct the claims. There exist several spelling and grammar
checkers which can be potentially applied. These checkers can correct the query, too. Hence,
this approach is not sensible for the stance classification step. If checkers correct claims which
fits to the query for every request, then every single claim will be corrected many times. This
is a waste of computation time. More applicable is to use checkers in the indexing process5.
Argument search is a process with two main steps in the case of args.me: the indexing and
retrieval process (Wachsmuth et al., 2017). The indexing process includes the text acquisition
(e.g. with web crawling), the mining and assessment process (here checkers can correct the
relevant text parts) and the indexing process. Hence, in the indexing process, every argument
is processed only once. Because of the independence of spelling and punctuation correction and
the retrieval of arguments related to a search query the stance classifier should not check the
right spelling or punctuation.
Hence, even by using such checkers, there will always be incorrect spelling/ punctuation mistakes.
Hence, the solution is to seek for is choosing robust algorithms. Therefore, in addition to
the linguistically correct sentences as claims and topics, the stance classifier must handle the
following common cases:

Single word/ single phrases claims or queries, respectively: This input is an easy case
if we classify, for example by using a heuristic, an input in this class. An algorithm chooses the
whole string in the target identification step. In the sentiment classification step, the algorithm
considers a positive sentiment. The reason is in the human reasoning: if a user argues in a debate
portal in a certain thread regarding the topic tF with a supported or PRO relation, respectively,
he argues for the topic. Therefore the sentiment of the claim, which is the topic tF must be
positive. For example, if a user supports the debate with a title/ claim God, the user is likely to
give a reason for God’s existence or why it is reasonable to believe in God, respectively. The same
argumentation applies for a query. If a user searches in the argument search case for God, he
expects arguments for God on the PRO side and arguments against God, God’s existence or faith
in God, respectively, on the CON side. The Equation 3.5 shows the validity of this concept. If
an authors supports the single word/ single phrase topic tF and somebody searches for a related
single word/ single phrase topic t′F in the argument search engine, the stance classifier predicts
for this argument’s premise a: Stance(tF , t′F ) = S(a, c) · 1 · R(tF , t′F ) · 1 = 1 · 1 · 1 · 1 = 1. Hence,
the algorithm sorts the argument’s premise a to the PRO side.

versus-queries: versus-queries are valid queries for args.me (Wachsmuth et al., 2017). Con-
sider the query Christianity vs Islam. If the argument search engine retrieves arguments which
contain Christianity or Islam, then the search engine retrieves probably too many arguments.
Consider the conclusion Religions, for example Islam, are bad and an argument which supports
that claim. The argument is neither a PRO argument nor a CON argument because it argues
against Christianity and Islam. A concept suggestion to solve this problem is to have two re-
trieving processes: one process searches for claims, which include Christianity. Then, the stance

5A remark to applying checkers automatically without asking the author: checkers correct texts in a wrong
direction, too. For example, consider a conclusion from args.me “For And Against Is BETTER Than Google.”.
Maybe this was a misleading result of a checker because what the author meant is the debate portal ForAndAgainst
and not the three words.
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classifier would discard all arguments with a negative stance towards the topic. The second pro-
cess does the same with Islam. Hence, there is a PRO-Christianity column and a PRO-Islam
column in the final presentation.

Questions as claims or queries, respectively: The concept is similar to a claim case. The
concept of a question is to convert it to a claim. For example, if a user queries “Does God
exist?” it is similar to the claim “God exists”. Therefore, such a user expects on the PRO-side
arguments which support God’s existence and on the CON -side arguments which deny God’s
existence.

Spelling mistakes in the argument index (therefore, in the claim): There is no efficient
way to solve this problem in the retrieval process. If the mistake is in the class of upper and
lower case mistakes, then the problem is not a critical problem in some languages like English
by lowering all characters on the token level. Other languages are a little bit more critical, but
not highly critical — like German. “Weg” is a noun and means way, path, journey or method,
respectively. In opposite to “weg” – this word is an adverb and means something like away
or gone, respectively. Hence, spelling mistakes constitutes a more critical problem. A spelling
mistake may lead to empty results in lexicon-based processes like the sentiment labelling of
tokens or the finding of paths in WordNet. Also, analysis engines on the token level can stumble
by spelling mistakes, for example by retrieving the lemma of a word.
However, the argument index and the query log of args.me do not show many shreds of evidence
of spelling mistakes except upper and lower case mistakes.

Punctuation mistakes in claims or queries, respectively: There is a valid assumption
that claims or queries are only single sentences if they are not single words or single phrases.
Hence, inserting or assuming a missing punctuation mark at the end of the string is a trivial
solution that solves many punctuation mistakes. Although this solution exists, it does not solve
the problem of missing commas.
Hence, it is essential to have a robust parser. There are considerable differences in robustness or
tolerance to linguistically incorrect inputs, respectively. For example, the constituency parser of
Stanford6 is very robust but potentially slow. In opposite, the TT4J-TreeTagger/PhraseChunker7

is very efficient but not robust against linguistic violations (Figure 3.3). Moreover, the TT4J-
PhraseChunker executes a shallow constituency parsing by the using decision trees. A shallow
constituency parsing tags the top-level phrases from a constituency parse tree. That means
that phrases are ignored, which are included by a broader phrase. A second disadvantage of
shallow parring is that phrases do not get references to parent entities. Parent entities are
phrases which includes the tagged phrases or, if such phrases do not exist, the whole clause or
sentences. However, a shallow parsing mostly is more effective than a complete tree-parsing.
The TT4J-TreeTagger-Tools are actually very efficient: the average computation time of a shal-
low constituency parsing takes lesser than a millisecond for each sentence (Wachsmuth, 2015).
However, a further disadvantage is the effectiveness with mistakes in the use of upper and lower
case and the punctuation mistakes. It is often an effectiveness-efficiency-trade-off at the end.
One approach is to test different parsers and decide later for one of them.
Although, even for humans, it is sometimes hard to infer the intended meaning out of linguisti-
cally incorrect sentences. Consider the claim “Religion will increase feed and heal” and “Religion
will increase, feed and heal”. Only one comma has changed the message. However, claims in

6Stanford CoreNLP 3.9.2 which can be tested here: http://corenlp.run/
7https://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
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Men Have Problems Too
noun phrase verb phrase noun phrase

Men have problems , too .
noun phrase verb phrase noun phrase , adverbal phrase .

Abortion = Good !!!!!!!
noun phrase = noun phrase ! ! ! ! !

Abortion is good !
noun phrase verb phrase adjectival phrase !

Figure 3.3: This pictorial representation shows the results of the shallow constituency parsing
by the TT4J-TreeTagger/PhraseChunker. This figure contains two claims from the argument
index of args.me (Ajjour et al., 2019): “Men Have Problems Too” and “Abortion=Good!!!!!”
(Section 3.2). The TT4J-TreeTagger/PhraseChunker parses these two examples and does mis-
takes several times – in the figure marked by a red font (wrong POS-tag or lemma-tag) or a
yellow node (wrong phrase label). The claims were manually corrected in the next step of the
experiment. Now, the TT4J-TreeTagger/PhraseChunker was able to tag all entities correctly.

args.me are often not so complex linguistically (Ajjour et al., 2019). Also, the authors pay at-
tention to such punctuation failures that lead to another interpretation than the author meant.

3.3.2 Concepts of handling not public parts

The application of stance classification of IBM and some related methods or references are com-
mercial or internal and therefore not accessible for the public (Wachsmuth et al., 2017). Hence,
the application which this thesis presents must reimplement approaches or is forced to find en-
gines which are public for some part similar.
One important example is the ESG-Parser. IBM uses the ESG-Parser to find noun phrases in the
claim target identification step and to generate anchor candidates in the contrast classification
step (Bar-Haim et al., 2017a). Another example is a contrast relation function thesaurus-based
synonym-antonym relations using polarity-inducing LSA (Bar-Haim et al., 2017a). There is a
reference to a paper which describes the method in a sufficient way, but the code or a library
is missing. Because of limited manpower it is not possible to reimplement every single method
reference. Also, Bar-Haim et al. (2017a) mention parts of the approach where a detailed de-
scription is missing. One example is in the claim target identification step the suggestion of
including paths in WordNet as a feature representation of a phrase. The Appendix A.1 of this
thesis describes an algorithm for paths in WordNet.
Apart from this cases there are public references, too. For example the feature of cosine sim-
ilarity of word2vec embeddings was easy to derive: there exists a library deeplearning4j8 for
Java.
Though, not only methods and functions are sometimes not public. The problem includes
missing word lists and lexicons, too. For example, IBM uses a manually composed list with
approximately 160 sentiment shifter words for the sentiment shifters application in the claim
sentiment classification (Bar-Haim et al., 2017a). This list is not public and therefore we com-

8https://deeplearning4j.org/
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posed a list which is not as comprehensive as the original list. Other missing lists are the cue
phrases lists for the relation function of IBM in the contrast classification step. Furthermore,
IBM uses the query logs of the BlekkoTM search engine which are not public, too. Instead, this
thesis uses the query logs of AOL 9 from the year 2006. The search queries differ from the search
queries of our days, but they are still useful to get clues about consistent and contrastive anchor
pairs. Additionally, this thesis refers to the query logs of the args.me-argument-search-engine.
This log fits perfectly to the task to find consistent and contrastive anchor pairs. The reason
is the special type of querying. The log potentially contains many hints because of valid search
patterns like “Heavenly Father and Christianity” (consistent) and “summertime vs wintertime”
(contrastive). The problem is the small size of the log so far (Ajjour et al., 2019). But there
is a mutual effect: if more users use args.me, then the contrast classification becomes more
accurate and as result the stance classification. Hence, args.me is becoming more attractive
and potentially more users use this argument search engine.

3.3.3 Concepts of efficiency

In this subsection, this thesis presents adaptations in favour of efficiency to succeed with an
on-demand-solution on argument search. There are many points for saving computation time.
One approach is to exchange primitive analysis engines in the analysis pipeline. This pipeline
includes machine learning processes to predict, for example, the target of a claim. There are
some steps in the pipeline in which more than one primitive analysis engine is available. One
example is the step to determine phrases in a sentence. There exist several constituency parsers,
like the parser of Stanford or the TT4J-PhraseChunker. In some cases, the runtime and effec-
tiveness differs a lot (Figure 3.3) (Wachsmuth, 2015). One approach to increase efficiency is to
evaluate different combinations and to observe the different side-effects of using different sets of
analysis engines.
Following steps are necessary for a full approach-implementation of stance classification, in-
cluding their considered primitive analysis engines as subitems in the list (we implemented the
cursive printed analysis engines):

1. segmentation of sentences

• InfexBASentenceSplitter/ WachsPottSentenceSplitter: rule-based sentence splitter
(runtime10 per sentences: < 1ms)
• ICU4jSentenceSplitter: break-iterator algorithm (average runtime per sentences: <

1ms)
• UIMATokenAndSentenceSplitter: simple whitespace segmentation (average runtime
per sentences: < 1ms)

2. segmentations of tokens

• UIMATokenAndSentenceSplitter: simple whitespace segmentation (average runtime
per sentences: < 1ms)
• InfexBATokenizer: rule-based token splitter (average runtime per sentences: < 1ms)

3. segmentation of syllables

• TextHyphJSyllableDetector: TeXHyphenator-J11 (average runtime per token: < 1ms)
9http://www.cim.mcgill.ca/ dudek/206/Logs/AOL-user-ct-collection/

10This and following runtimes refer to a successively execution on a Intel-Dual-Core-CPU i3 2GHz / 8GB RAM
11http://www.davidashen.net/texhyphj.html
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4. tagging each token with its lemma:

• TT4jLemmaAndPartOfSpeechTagger: uses TT4J-TreeTagger (average runtime per
token: < 1ms)
• MateLemmatizer: classifies lemmas based on a large margin model (average runtime
per token: 11ms)

5. tagging each token with its POS-Tag

• TT4jLemmaAndPartOfSpeechTagger: uses TT4J-TreeTagger (average runtime per
token < 1ms)
• MatePartOfSpeechTagger: classifies lemmas based on a large margin model (average
runtime per token: 11ms)

6. tagging each token with a sentiment

• TokenSentimentLexiconAnnotator : lexicon-based annotator

7. parsing of phrases (average runtime per sentence: 1ms)

• StanfordParser12 (runtime depends strongly on the complexity of the sentence)
• TT4jPhraseChunker: TT4J-PhraseChunker (average runtime per sentence: 1ms)

8. filtering the phrases

• RelevantConstituentsTagger : simple Phrase-Label-Filter (average runtime per phrase:
< 1ms)

9. labelling each phrase with a score whether it exists as header in Wikipedia or not

• WikipediaTitleRecognizer : uses the API of Wikipedia and a local cache (runtime
depends on cache strongly, but initial runtimes of approximately a half second are
common per phrase)

10. tagging each phrase with a confidence value that this phrase is the target

• ConstituentTargetRegressorTagger : machine-leaning approach (runtime depends on
its hyperparameters strongly)
• ConstituentTargetGroundTruthTagger : a simple rule-based approach which gives that

phrase a high value which fits to the ground truth target – useful for training and
testing (average runtime per sentence: 1ms)

11. take a final decision with phrase is the unique target

• TargetTagger : simple max-value-search (average runtime per sentence: < 1ms)

12. compute a sentiment score for the text

• TextSentimentLexiconAnnotator : implements the approach of Section 3.1.1 without
an extended opinion lexicon and contextual features (averageruntime per text, for
example, a claim: 5ms)
• ArguAnaGlobalSentimentScoreClassifier: SVM-based classifier

12http://corenlp.run/
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• TextSentimentStanfordAnnotator12

13. compute a contrast score for the text

• ClaimContrastClassificationRegressor : implements the approach of Section 3.1.1 (run-
time depends strongly on its hyperparameters)

This list reveals that a second factor is essential for efficiency, too: the hyperparameters. Nearly
all primitive analysis engines have hyperparameters like learning models. These parameters in-
fluence the behaviour of the engine. For example, in the ConstituentTargetRegressorTagger and
ClaimContrastClassificationRegressor hyperparameters control the feature computation, which
features will be activated and which learning model is used. This control results in enormous
effectiveness-efficiency-deviations. One example is in the ConstituentTargetRegressorTagger:
one feature is the paths in WordNet (A.1). The algorithm executes a depth-first search in the
graph of WordNet. Each node (a word) has many connections to other related words. The
degree of a node differs much, but let us assume, each node has a degree of n. Hence, we
assume allowing to search deeply will increase the quality of the approach: the algorithm will
find relations of two words which have nothing to do with each other on the first view. Such
cases will be punished with a high distance value, but they will be recognized. This attitude
is not the case if the algorithm quits a search too early. However, this tenacity costs lots of
computation time: it is O(ni) if we allow a maximum depth of i. With a degree of 50 and a
maximum depth of five and two relevant tokens in the claim target candidate and the topic
target, the algorithm will look up approximately 505 · (2 · 2) = 1.25 billion words. Even with a
maximum search depth of two, the algorithm will look up approximately 10.000 words in this
example. There are some ideas to save computation time like saving each result of a search in a
map. Because of symmetry, we store a result for two pairs. However, Table A.1 shows that this
feature is very costly. Hence, it is worth to consider disabling the whole feature type.
Storing already computed results of deterministic complex time-independent functions is, in
general, a desirable approach for increasing efficiency. Another example where this idea is useful
is the Wikipedia-feature-type in the target identification step. Instead of asking Wikipedia for
every target candidate for every request, which can result in congestion, we store every answer
(Wikipedia title or not) in a map. Before shutting down the analysis engine we save it in a
file. The complexity of this analysis engine will converge quickly to O(1) by using this strategy.
Wikipedia headers tend to be stable over time. Nevertheless, in the case of Wikipedia this
solution should use expiry timestamps if the system which uses the stance classifier runs over a
long time (months or years).
Another critical part is the relation function, which was presented by Bar-Haim et al. (2017a)
in the contrast relation step. This relation function searches for cue phrases in log files of search
engines. Even with preprocessing (filtering all queries which contain only one token13) it is costly
to filter a list of millions of strings. For example, it takes approximately a quarter second to
process a list with 1.6 Million strings. It turns out that avoidance of regular expression reduces
the computation time a lot. The approach which uses regular expressions needs two seconds
per claim-topic-pair. The reason is the creation of the Pattern-Objects in Java, which must
be done on demand because the pattern of the regular expression requires the search query.
The replacement by an approach which uses branched String::indexOf can additionally be
combined with further preprocessing of the log files and a more intelligent storage structure like
tree structures – although, it turns out that even strongly suggested relation functions can be
considered to be disabled.

13The cause is that the approach looks for queries which contain the two sides of an anchor pair, hence, at least
two words
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The third concept of efficiency is to replace parts – primitive analysis engines or feature types.
In this case, the paper suggested already an adaptation in the previous section: instead of us-
ing morphological similarity features, which requires the slow MateMorphologicalTagger, the
algorithm can choose the syllable similarity. Consider the example syllable and syllableness.
The morpheme of both is syllable. Hence the morphological similarity is 1. The syllables are
{syl, la, ble} and {syl, la, ble, ness} and the Jaccard similarity coefficient |{syl,la,ble}|

|{syl,la,ble,ness}| = 3
4

which is an approximation of 1. This approximation succeeds not in all cases, for example speak
and spea-ker. Although, it is a suitable similarity measure for two phrases because a high simi-
larity coefficient means a significant overlap of the two phrases.

An overview of all adaptations of the stance classification approach resulting from this section
is given in Table 3.1.
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Suggested methods Used methods in argument search
Claim identification step of the IBM approach (Section 3.1.1)

1) target candidate extraction
ESG-Praser Stanford-ConstituencyParser or TT4J-

PhraseChunker
2)Features for claim candidates

syntactic and positional features syntactic and positional features
Wikipedia Wikipedia
sentiment sentiment
morphological similarity to topic syllable similarity to topic (Jaccard similarity)
paths in WordNet to topic (paths in WordNet to topic)
cosine similarity of word2vec embeddings to
topic

cosine similarity of word2vec embeddings to
topic + Word Mover’s Distance to topic (Kus-
ner et al., 2015)

Claim sentiment classification step of the IBM approach (Section 3.1.1)
1. Sentiment matching 1. Sentiment matching
2. Sentiment shifters application 2. Sentiment shifters application
3. Sentiment weighting and score computation 3. Sentiment weighting and score computation
Sentiment-lexicon-extension no extension
+ contextual features not used

Contrast classification step of the IBM approach (Section 3.1.1)
1) anchor pairs

all single tokens + phrases ⇒ max-
computation returns the main anchor
pair + further anchor pairs

determine exact one anchor (xc, xt)

2) contrast relation functions
morphological similarity syllable similarity (Jaccard similarity)
cosine similarity using word2vec embeddings cosine similarity using word2vec embeddings
reachability in WordNet via synonym-
antonym chains

reachability in WordNet via synonym-
antonym chains

thesaurus-based synonymantonym relations
using polarity-inducing LSA

–

relation function of IBM (relation function of IBM)
3) output of the machine learning process

Random Forest classifier: likelihood-score
[0, 1]

K-Star/ K-nearest neighbours classifier (K =
5): [−1, 1] for contrastive / consistent relation

Table 3.1: The table presents all considered adaptations between the approach of Bar-Haim et al.
(2017a), including the extensions which Bar-Haim et al. (2017b) suggested and the approach of
this thesis. The reasons for adaptations are a better fit for text peculiarities in the argument
search case (cyan), a forced reimplementation or the absence of the source code, respectively,
(gray), purposes of efficiency (blue) or own ideas for a extension (green).
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Extensions of the adapted ap-
proach

4
Chapter 3 introduces the necessary adaptations for argument search. Hence, not only adapta-
tions will improve effectiveness and efficiency, but extensions of the approach will, too. Some
ideas need an argument search context; other ideas are helpful for stance classification in general.
This chapter presents only implemented extensions. Table 3.1 shows already a part of the imple-
mented extensions. Nevertheless, this thesis had another focus than to implement and evaluate
all ideas. Hence, Section 7.2 will provide additional ideas for further work.
The most essential implemented extension refers to word embeddings (Section 4.1). Also, there
are some minor extensions, most of them on the technical level. Section 4.2 lists the additional
minor changes.

4.1 Word embeddings
Word embeddings are able to capture a large number of precise syntactic and semantic word
relationships. For that purpose, they map each word into a vector. There exist solutions to
consider idiomatic phrases, too (Mikolov et al., 2013). Therefore, the so called Word2Vec-
Models gives a great opportunity to linguistic research. The thesis gives an additional weight to
word embeddings in this chapter. The claim identification step and the contrast classification
step (Section 3.1.1) use word embeddings.

4.1.1 Creation and use of a word embedding model

Each word embedding model was trained on a specific text corpus to learn many linguistic
regularities and patterns (Mikolov et al., 2013). Effectiveness and efficiency strongly depend
on the dimensionality of the word vectors. High dimensional Word2Vec-models have many
possibilities to capture and model various nuances of the natural language. Hence, the downside
is a very storage intensive model file with a long loading time of the model, if the majority of
words should be shattered. Small models are not as effective as big models, but they are handy.
Common Word2Vec-models have a vector dimensionality of 50-300.
There are two possibilities to get a Word2Vec-model. The approach of this paper provides both:

• Using already trained Word2Vec-models: there are lots of Word2Vec-models freely avail-
able. Kusner et al. (2015) used a model which was trained on the Google news and
provides an embedding for 3 million words/ phrases1.The approach of this thesis prefers

1https://code.google.com/p/word2vec/

37



4.1 Word embeddings

GloVe (https://nlp.stanford.edu/projects/glove/). The Global Vectors for Word
Representation combines the advantages of the two major model families: local context
window methods and global matrix factorization (Pennington et al., 2014). However, the
implementation of the approach of this thesis allows any Word2Vec model. The way to
use it is to download the preferred model and to input the file path as a parameter for the
class RelationFunctions.

• Training a Word2Vec-model: the implementation provides a Word2Vec-model-Generation-
class for the case that a Word2Vec-model-reference does not point to an existing file.
In that case, the implementation collects the claims that should be classified, includ-
ing their context or argument’s premises. This text is the training text corpus for the
Word2Vec-model. Hence, the word embedding approach uses neural networks (skip-gram
model (Mikolov et al., 2013)); the implementation can define a layer size. The layer size
determines the dimensionality of the word vectors later. The implementation sets the
minimum word frequency to consider a word in the model in dependence to the length of
the text corpus. Also, the implementation provides a sentences iterator and a tokenizer.
Training on the IBM corpus results in 22,019 embedded words. This size is a miniature
amount of Word2Vec-models which can be found on the Internet.

4.1.2 Cosine Similarity and Word Mover’s Distance

Bar-Haim et al. (2017a) uses the cosine similarity in the claim target identification step and the
contrast classification step. In these cases, the algorithm processes phrases. Hence, there is a
need for determining the cosine similarity over a group of words. However, the cosine similarity
is originally only defined for pairs of single words in the context of word embeddings (Mikolov
et al., 2013). Hence, the algorithm must aggregate the results for each word combination of the
claim and the topic. A heuristic sorts the normalized similarities decently. Then, the heuristic
calculates the maximal token length of claim and topic, defined as m. It takes the first m cosine
similarity scores from the result list and returns the average of them. For example, the two
phrases “the honour of Jesus” and “God’s glory” would receive a high score because of a high
cosine similarity of (Jesus,God) and (honour, glory). Consider the phrases “Heavenly Father”
and “God”. Christians call God “Heavenly Father”. Hence, the cosine similarity should be high.
However, because of measuring word by word, so (Heavenly,God) and (Father,God), the re-
turn value unfortunately is not so high.
Kusner et al. (2015) presented a novel measurement which is based on word embeddings, too. It
handles the distance between text documents. The approach is useful to measure the distance
(and therefore, the similarity, too) of phrases. It is not a novel problem to measure the differ-
ences/ similarity of two texts – there are already solutions like the bag of words or the term
frequency-inverse document frequency. However, these measurements have drawbacks. For ex-
ample, they do not capture the distance between individual words and they do not use a high
semantic representation of words like word embeddings. The Word Mover’s Distance (WMD)
uses word embeddings and a similar idea like the approach using cosine distances in this thesis.
The idea is words from the one text (source) travel to words to the other text (target) – the
travel costs are measured by the Euclidean distance between the vector representations of the
words. The distance output is the minimal summed travel costs to transfer all words from the
source text (excluding stop words like “to” and “the”) to the target text. Figure 4.1 gives an ex-
ample. The author solved the minimization problem with a linear program. The consideration
of phrase entities like “Heavenly Father” depends on the underlying word embedding model.
The result of WMD is a positive real value which may be above 1. Because of that, the distance
value must be normalized by the largest distance value in the training set, pruned to 1.
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Figure 4.1: This plot, created for the paper’s example in 4.1, symbolizes the Word Mover’s
Distance between the phrases “the honour of Jesus” and “God’s glory”. The algorithm filters
the stop words in the first step. Therefore we consider only “honour”, “Jesus”, “God” and
“glory”. Suppose a two-dimensional word embedding; therefore, every word is represented by
two coordinates in the plot. The blue words are from the source phrase, the cyan words from
the target phrase. Now the source words “move” to the target words – the algorithm computes
the Euclidean distance and decides to map “Jesus” to “God” and “honour” to “glory”. The costs
are approximately 0.2 + 0.28 = 0.48, which is the return value.

The WMD makes 58% fewer mistakes in the text documents distance measure concerning the
k-nearest-neighbourhood results. in nearly all cases WMD is more accurate than other state-of-
the-art text distance measuring methods (Kusner et al., 2015).

4.2 Other minor extensions

The first minor extension is to decouple the classification of the claim target candidates and
determination of the target for later use. The target has its isolated annotation, and therefore,
it is possible to exchange the classification analysis engine without any side effects to the other
analysis engines. There are at least two possibilities to classify a claim target candidate: with
machine learning or with a heuristic by knowing the ground truth or by inferring it directly from
the topic. Beside to the suggest machine learning approach the stance classification module
contains an analysis engine for classifying target candidates concerning their Jaccard similarity
coefficient to the ground truth or the topic. Hence, it is possible that not exactly one candidate
is labelled as the true target or with a high confidence value – in this case, the analysis engine
which determines the target generates or selects the final target. This two-step-approach makes
the (claim/ topic) target identification step robust and flexible.
A second minor extension is mainly in the sentiment matching of the (claim/ topic) sentiment
classification step. Bar-Haim et al. (2017a) suggested determining positive and negative terms
with one sentiment lexicon. Later they suggested an expensive way to extend the lexicon. The
approach of this thesis follows another idea. Because of the popularity of the sentiment research,
there exist many sentiment lexicons in these days. The approach is to combine a set of sentiment
lexicons. The implementation provides a primitive analysis engine which can consume a set of
sentiment lexicons (list of words with positive and negative sentiments). Because of having a
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set, a word can occur in several sentiment word lists. Because of the ambiguity and context
dependence, a word may occur in some lexicons as a word with positive sentiment and in other
lexicons as a word with negative sentiment. In that case, this primitive analysis engine provides
four aggregation methods: the average, the majority voting, and the max- and min-function.
Due to the average aggregation method, it is possible to result with real-valued sentiment values
in the range of −1 to 1.
The last minor extension helps for purposes of debugging and the measurement of efficiency.
Every primitive analysis engine which we implement to solve the stance classification task inherits
from an abstract intermediate class. This abstract class provides an effective logger and traces
the computation time of this analysis engine. This class calculates and outputs the average
computation time per processed element in the end.
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mentation

5
This chapter gives a technical overview of the implementation of this thesis – the stance classi-
fier. The implementation contains thousands of lines of code. We mainly used the programming
language Java, but there are several configuration files (mostly in XML), too. Also, the im-
plementation contains small lexicons which we composed manually for some subtasks. Hence,
this chapter gives just an overview and a more in-depth insight into the implementation only on
some points. Section 5.1 gives a structural overview from the perspective of the stance classifi-
cation application. Also, Section 5.3 describes how to use the application and it gives further
implementation insights.
A central part of stance classification uses machine learning. Section 5.2 gives an overview from
the perspective of the underlying machine learning parts.

5.1 General overview of the structure of the implementation

The implementation uses an interlocked framework as Figure 5.1 shows. The stance classi-
fier is embedded in the AITools4. This tool provides integration to Apache UIMA (Ferrucci
and Lally, 2003). This framework supports type-systems of annotations and interfaces for cre-
ating own analysis engines. There are five used categories for primitive analysis engines. A
basic category is the segmentation. Analysis engines divides the input text into useful units
like the InfexBATokenizer in this category. Also, the following category is the tagging cate-
gory. Taggers add additional information to existing annotations like tokens. An example of
a primitive analysis engine is the TT4jLemmaAndPartOfSpeechTagger. We extended the tag-
ging category by primitive analysis engines which create annotations for the stance classification
on the base of existing annotations. One example is the RelevantConstituentsTagger. This
tagger marks specific phrases as relevant for further processes, for example, as target candi-
dates for the target identification step. Because of the implementation habit not to extend core
types like the phrase annotation, we created a new annotation type which refers to its phrase
annotation. The parsers interleave with the taggers. The parser-category contains primitive
analysis engines like the TT4jPhraseChunker. Then, there is the categorization category. Anal-
ysis engines in this category classify units of texts or the whole input text. Examples are the
TextSentimentLexiconAnnotator and ClaimContrastClassificationRegressor. The last
presented category of entity recognition. Analysis engines in this category detect entities in the
text like names, dates or wikipedia article headers in the case of WikipediaTitleRecognizer
Primitive analysis engines can be composed to aggregate analysis engines. With these engines,
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Figure 5.1: This figure shows the general structure of our implementation. Apache UIMA
supports the main flow in combination with the AITools4 which contains several primitive anal-
ysis engines. Also, the feature-framework of the AITools4 helps to integrate Weka, a machine
learning software. Trained learning models can be used as well as analysis engines.
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there is the ability to process a raw input text to a richly annotated text including high-level
annotation types which are based on each other. Section 3.3.3 lists the relevant primitive anal-
ysis engines for our approach. The standard analysis pipeline of our implementation contains
the following primitive analysis engines:

1. segmentation/InfexBASentenceSplitter

2. segmentation/InfexBATokenizer.xml

3. segmentation/TextHyphJSyllableDetector

4. tagging/TT4jLemmaAndPartOfSpeechTagger

5. parsing/StanfordParser

6. tagging/RelevantConstituentsTagger

7. entityrecognition/WikipediaTitleRecognizer

8. categorization/TokenSentimentLexiconAnnotator

9. tagging/ConstituentTargetRegressorTagger

10. tagging/TargetTagger

11. categorization/TextSentimentLexiconAnnotator

12. categorization/ClaimContrastClassificationRegressor

We will adapt this aggregate analysis engine for a validation in effectiveness and efficiency in
Chapter 6 later on.
The used annotation types come from the core-type-system, metadata-types, which are in-
spired by the approach of Bar-Haim et al. (2017a), and a type-system which contains spe-
cific annotation types for the stance classification. Examples for stance specific types are the
ConstituentAdditionalInformation-type which stores feature-related values for the target
identification, Contrast-type and the ClaimInformation-type which stores the sentiment of a
claim (or the topic – each topic is a claim in itself, too). The mentioned metadata-types are
Topic and Claim. These types are important for the usage of the stance classifier. Hence,
Section 5.3 explains them.

Apache UIMA is not the only integrated framework as Figure 5.1 shows. The Constituent-
TargetRegressorTagger and ClaimContrastClassificationRegressor analysis engines use
machine learning. There are two prerequisites for machine learning: an algorithm which converts
an instance, for example, a target candidate or a claim, into a vector representation. Vectors
consist of feature types (Section 2.1.2). The second prerequisite is a machine learning algorithm.
Weka fulfils the second prerequisite. This tool contains a collection of machine learning algo-
rithms for data mining tasks (Frank et al., 2016). The used AITools4 provides a framework for
the first prerequisite. This framework, which we extended slightly, contains the following steps:

1. feature determination step: this step introduces the feature types with their features.
Every feature, that is every value in the vector representation, is labelled with a name.
Hence, this step defines the number of dimensions for each vector. Also, this step searches
for the most extreme value for each desired feature to have a normalization value later on.
This step is only executed in the training phase.

43



5.2 Selected insights to the machine learning parts

(a) initializeFeatureDetermination(Properties configurationProps) →
initializeParams(Properties configurationProps): this method initializes the
feature engine. For example, in this step reads the input properties and loads dictio-
naries.

(b) updateCandidateFeatures(JCas uimaContainer, int start, int end): this method
is called for every instance in the training set and updates the feature set and option-
ally the value bounds for normalization.

(c) determineFeatures(Properties configurationProps, Properties normalizationProps):
this method finishes the feature determination step and writes the normalization val-
ues into a property file.

2. feature computation step: this step calculates the feature representation of an instance.

(a) initializeFeatureComputation(List<String> features,
Properties configurationProps, Properties normalizationProps) →
initializeParams(Properties configurationProps) +
initializeNormalizationParams(PropertiesnormalizationProps): this step loads
the properties and prepares the following step.

(b) computeNormalizedFeatureValues(JCas uimaContainer, int start, int end)→
computeNormalizedFeatureValuesStep(Cas uimaContainer, int start, int end):
this steps calculates and outputs the feature representation of an instance. The ex-
tension of the framework logs the computation time and collects statistics which can
be requested.

The primitive feature engines can be aggregated like primitive analysis engines in Apache
UIMA. Every primitive feature engine is responsible for one specific feature type.

5.2 Selected insights to the machine learning parts

Machine learning is an essential part of the target identification step and contrast classification
step. Machine learning consumes the features which have been created before as a real-valued
vector and returns a real-valued prediction. All input values are in the range of 0 to 1. Ex-
ceptions are the inputs from the relation function in the contrast classification step, which can
detect contrasts directly. These functions return values in the range of −1 to 1. These limita-
tions require an intermediate normalization step. The normalization step divides each feature
value by the highest value of the feature, which has been observed in the training phase. If a
higher value occurs in the testing phase than the highest value in the training phase, then the
value is pruned to 1 (or −1, analogously). This situation can occur by features types which
measures a distance.
Model selection and hyperparameter tuning play a critical role in machine learning. One hint
to find the best fitting model, including its hyperparameters, was using AutoWeka (Thornton
et al., 2013). The problem with that approach was that AutoWeka is only available to a Weka-
version of 3.7.13 or higher. Because of dependencies to the used framework, the version 3.7.4
was only sensible. Hence, the version 3.7.13 enabled many models for regression tasks. So, Au-
toWeka suggested the most times a RandomForest-model which is not available as a regression
model in 3.7.4. Nevertheless, it turns out that other available regression models are sensible, too.

The chosen model for the target identification task is a Regressor-SVM – a confidence value
predictor that a particular target candidate is the right target. Hence, an output of 0 means

44



Chapter 5. Technical overview of the implementation

that the model is sure that the candidate is not the target. An output of 1 expresses the con-
fidence that the candidate is the target. All real values (degrees of uncertainty) are possible.
The reason for choosing an SVM for this task is that most features are directly linearly related
to the predicted confidence value. An interesting point is the weighting of the one-hot-feature
set regarding the relation to sentiment tokens. Some encodings are rare, and hence, this can
become a weak point for overfitting. High absolute weights gained, for example, an auxiliary
relation from target candidate to a sentiment token (−1.2), a clausal complement relation (+1)
and a nominal subject relation (+0.57). Another interesting fact of trained SVM was that the
Wikipedia-feature-type has no or nearly no weight. Nevertheless, an SVM is a reasonable choice,
here. Also, the right choice for the complexity parameter c is critical. Due to an exhaustive
search it turns out that 0.1 ≤ c ≤ 0.6 fits well. Another hidden hyperparameter was the thresh-
old for the Jaccard similarity of classifying a phrase as a ground truth target phrase. Bar-Haim
et al. (2017a) suggested classifying a target candidate as ground truth target for the leaning
model if the word-based Jaccard similarity with the ground truth target is ≥ 0.6. Hence, the
learning model learns false targets, too. However, due to this threshold, the small ratio of pos-
itive instances increases. In the validation it turns out that a higher threshold increases the
mean squared error of the trained regressor even with oversampling the positive instances. The
reason is the overfitting problem if the variety of positive instances becomes too small. Hence,
we fix the threshold at 0.6.

The favourite learning model for the contrast classification problem was not an SVM. The
reason is that two out of four relation function (in a setup where all feature types are enabled)
are similarity functions and therefore not directly related to a classification in contrast and
consistency. The relation function which IBM presented works accurately with a rich log base.
Until yet, the used log base is not extensive, especially in respect to logged queries which con-
tain comparative conjunctions. This relation function performs more to a step function than
a smooth function. Because of this circumstance, an SVM does not outperform decision trees,
the K-Nearest Neighbourhood or the K-Star. The latter two learning models archive the best
effectiveness. It was essential for good effectiveness to activate weighting for the K-Nearest
Neighbourhood. The inverse-distance-weight aggregation function outperforms other configu-
rations. They output real values in the range of −1 (contrast) to 1 (consistency). However,
these models are lazy learning models – this decreases efficiency. Nevertheless, the results were
promising. Hence, we choose a Regression-K-Star model.

5.3 Usage of Stance Classifier

The purpose of the stance classifier is the use in the argument search engine args.me, like 5.1
figures. It calculates a set of stances regarding a set of claims (the conclusion of arguments) and
a topic, the query. Nevertheless, the stance classifier works standalone, too. An essential part of
Apache UIMA is the collection reader step which uses collection analysis engine(s) (Ferrucci
and Lally, 2003). The defined collection reader gathers the content of files or a text collec-
tion and wraps them into the general Apache-UIMA-object (called Common Analysis System
– CAS/ jCAS). A UIMA-CAS provides an efficient general object-based representation of the
annotations, based on the loaded type-system. It functions as a container which holds and
ships the results of the collection and text analysis engines. It provides serialization methods,
too (Ferrucci and Lally, 2003).
Hence, it is essential to use collection analysis engine(s) for the usage of the stance classifier.
We implemented a robust and adaptable collection analysis engine directly for this purpose: the
UIMAJSONIBMDebaterReader. This collection reader takes JSON-files and converts them into
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Claim-Topic-pairs. To archive that, a JSON-file must have the following structure:

• the text of the topic (topicText). Optional for topics are: the target, the ID, the sentiment
and a marker whether this topic is for training (train) or testing (test) of the machine
learning parts

• an array of claims which belong to the topic and where the stance classifier should de-
termine a stance to the topic. Each claim should contain:

– the text of the claim (claimText) or the following two name-value-pairs:
claimOriginalText and claimCorrectedText

– the context of the claim, if there is a context. This can be for example the article
where the claim was found or the argument’s premise towards the conclusion which
is the claim. There are two possibilities for encoding that:
∗ the plain text with text
∗ an article-object which contains file references for the original file (cleanFile,

cleanSpan) and the corrected file (rawFile, rawSpan)
– the following attributes are optional: the ID, the relation to the target (−1 (con-

trastive) or 1 (consistent)), the sentiment of the claim towards its target (−1 negative
or 1 positive), the author’s stance towards the claim (PRO or CON ) and the stance
towards the topic (PRO or CON )

The collection reader creates a UIMA-CAS for each claim. The text of the UIMA-CAS is
the text of the claim. The Claim-type stores all additional information like the context or
information for validation like the stance. This type acts like a metainformation-container.
Each Claim-type has a reference to a Topic-type. This type holds the information to the related
topic. A Topic has a topic text, and analysis engines can process it like the claim due to an
implemented handler, the TopicAnnotationStorage. This class replaces the preprocessing of
the collection analysis engine and creates a Claim annotation for the topic, including a referred
Topic annotation. We implemented it as a reflexive relation.
Hence, the current working way to use the stance classifier is to write one or more topic-claim-
JSON-files1 and inputs them into the provided utility class for stance classification.

1the JSON-representation of the IBM Debater dataset, which Bar-Haim et al. (2017a) presented, is working,
too. The download page is https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml

46



Evaluation
6

This chapter contains the evaluation of the approach of this thesis. Section 6.1 describes the
experimental setup and is the base for the results which Section 6.2 presents. Section 6.3
analyses, discusses and compares the results with other approaches. This Section compares the
stance classification approach of this chapter with the simple heuristic in args.me, for example.
Also, this section analyses the results with respect to the results of the base approach (Bar-Haim
et al., 2017a).

6.1 Experimental setup

Our goal is to validate the effectiveness and efficiency of the adapted approach, based on Bar-
Haim et al. (2017a) (Section 3.1), in the argument search. To this end, we present two corpora in
Section 6.1.1. One of them bases directly on the corpus of the argument search engine args.me.
A further goal is to understand the influence of the components, adoptions and ideas in respect
to effectiveness and efficiency. In the end the final aim is to determine a composition of the
components which succeeds with the stance classification in argument search.
Hence, this section explains the complex experimental setup. The implementation offers many
degrees of freedom. Every one of the three steps for stance classification, which 3.1.1 describes,
offers different configuration options. Also, the analysis pipeline is flexible, too. These possibil-
ities lead to a massive amount of specific setups, which 6.1.2 describes.

6.1.1 Two corpora for the evaluation

This chapter presents two corpora. We validate the approach of this thesis against both of them.
Although, the corpus of IBM is the central one. We used a part of that corpus for training the
machine learning parts.

The corpus of IBM

IBM Research presented a public corpus (Bar-Haim et al., 2017a). This corpus is split into a
training set with 25 topics and 1,039 claims for machine learning purposes. The test set of the
corpus contains 30 topics and 1,355 claims (Bar-Haim et al., 2017a). Although, Section 3.2 shows
that there are significant differences between the setup of the IBM corpus and the argument
search case. For example, we introduce a dummy value in the IBM corpus which always returns
1 to project an author’s stance towards the claim. The reason is to overcome the differences
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that Bar-Haim et al. (2017a) classifies the stance of claims directly and not argument’s premises
like the argument search. Therefore, we assume that each claim is always supported, which is
equal to the original task to determine the stance of a claim towards a topic. Nevertheless, the
other differences can not project to the IBM dataset. Hence, this thesis introduces an argument
corpus for the argument search in the next subsection.

The corpus of args.me – an annotated sample

The argument search engine args.me uses an underlying corpus with 387,606 arguments (Ajjour
et al., 2019). We used this large argument resource to create a manually annotated sample of
this corpus. This subset was used for testing in addition to the IBM corpus. The goal is to
prove the effectiveness and efficiency of the approach of this thesis in an actual argument search
case. We composed the annotated subset as follows:

Gathering of claims: Claims were gathered in the first step. In the process we first collected
topics. The process results in ten controversial topics, that are the search queries for args.me.
Five of the ten topics are search queries of the top ten search queries (Ajjour et al., 2019):
“Climate Change”, “Feminism”, “Google”, “Vegan” and “Donald trump”. The other five topics
were relevant, too, in that sense that users of args.me search at least once for each of them. The
five topics are: “abolish death penalty”, “abortion is bad”, “refugees”, “God” and “Hitler”. The
claim collection follows on choosing the topics. We collected ten different supported conclusions
and ten different attacked conclusions, in sum 20 claims per topic, for each query.

The annotation process: Three annotators which were not involved in this thesis assessed
each claim towards its topic. The task was set as follows:

“The task is to classify the stance of 200 pairs of argument conclusion and stance
towards ten different topics. For each topic, the appended Excel sheet has one
separated index tab.
In each tab, you will find the topic in row 2. column B contains the conclusions
and column C the stance of someone towards each conclusion. In column D, you
shall now fill in the resulting stance (PRO or CON ) towards the given topic. So,
you can read each row as follows: If someone has a <Column C> stance towards
the conclusion <Column B>, that person is likely to have a <Column D> stance
towards <topic>.
In case the conclusion is a question, interpret the given conclusion-stance pair as you
think is reasonable.”

The annotators agreed with each other independently in most cases. However, there were 31
conclusion-topic-combinations where there was a disagreement. Hence, 85% of all claims have
unambiguous ratings1. The majority opinion wins in the ambiguous case. An example of such
a disagreement is the stance of the conclusion “If there is a God, then it is most definitely
the Christian God.” towards the topic “God”. Nearly all 31 disagreements resulted from cases
like the example in which it is not initially clear which stance fits. However, there were a few
disagreements in unexpected cases, too. For example, the annotators voted differently for the
stance of an argument’s premise which supports the conclusion “Feminism is bad” towards the
topic “Feminism”. The majority voted for a CON stance. This manual annotation process shows
that even for a human, it is not easy to succeed with the stance classification task. Nevertheless,

1Therefore, a lower bound for the human baseline is, in this case, an accuracy of 0.85, if we assume, that two
annotators always agree to each other and the third one always disagrees in the ambiguous cases.
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the annotated sample contains a substantial agreement – the Fleiss’ kappa score is 0.79 (Brennan
and Prediger, 1981).
After the manual annotation process each conclusion got a corresponding argument’s premise
from args.me. Hence, the argument’s premise did not influence the decision of the annotators
at all. Besides the contextual features, the annotators assessed only on the conclusion of the
topic like the stance classifier.

The conversion step: Until then the Excel sheet contained the annotated data. The Excel
format is not optimal for machine reading processes. Hence, a conversion to the JSON-format
was the next step. The JSON-format bases on the format of the IBM format. Each topic
is an upper-level node with the name-value-pairs topicId: Number topicTarget: String,
topicText: String and topicSentiment: Number. Also, each topic contains an array with
all its claims. A claim-JSON-object consists of claimId: Number, claimText: String,
claimTarget: String, claimSentiment: Number, targetsRelation: Number,
text: String, authorsStanceTowardsClaim: String and stance: String. All name-
value-pairs were set automatically, including the majority voting of the annotators for the stance.
The sentiment of the topic, the sentiment of the claim and the contrast relation to the target
of a claim established an exception. The annotators assessed only on the basis of the author’s
stance towards the conclusion, the conclusion itself and the topic like the stance classifier. The
stance classifier can use contextual features additionally.

6.1.2 The experiment

The experiment measures the effectiveness and efficiency on the two corpora which Section
6.1.1 describes. The efficiency is measured by the runtime on an Intel-Dual-Core CPU of the
third generation with 2.0GHz and 8 GB RAM. Furthermore, we define the terms accuracy and
coverage accordingly to Bar-Haim et al. (2017a). Let A be a set of claim-topic-pairs. Also,
let |right(A)| be the number of claims for which the stance classifier predicts the ground-truth
stance. |wrong(A)| is the number of wrong predictions. If |A| is the total number of claims and
we assume that the stance classifier has the possibility to deny a prediction – hence, it is neither
a right nor a wrong prediction then – Equation 6.1 defines accuracy and coverage.

accuracy(A) = |right(A)|
|right(A)|+|wrong(A)|

coverage(A) = |right(A)|+|wrong(A)|
|A|

(6.1)

Also, if |positive(A)| is the number of those claim-topic-pairs which the stance classifier labels
with a PRO-stance and |negative(A)| those with a CON -stance-prediction, we define the PRO-
CON-ratio as 6.2.

PROCONratio(A) = |positive(A)| − |negative(A)|
|A|

(6.2)

Hence, a PRO-CON-ration of 0 indicates a balanced stance classifier. A value in the range of
(0, 1] indicates a stance classifier which tends to predict PRO stances and a value in the range
of [−1, 0) a stance classifier which tends to predict CON stances.
Furthermore, all methods which use word embeddings utilize a Word2Vec model with 200 di-
mensions.
We will analyse the following hypotheses:
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The approach which this thesis presents outperforms the current heuristic in args.me.
To this end, we determine a suitable configuration of the stance classifier and compare the re-
sults of the stance classifier and the simple heuristic in args.me. For both we utilize our sample
of args.me. Hence, the heuristic is a baseline. If we apply this heuristic to the main stance
classification formula (Equation 3.5), the heuristic would always set the value 1 for the sentiment
of the claim and the topic and contrast classification score.

The approach of Bar-Haim et al. (2017a) outperforms our adaptation on the IB-
M-corpus. However, our adaptation reaches better results on the args.me-corpus.
The reason for this hypotheses is that some details of the approach of Bar-Haim et al. (2017a)
were optimized for the IBM-corpus like the Wikipedia features. Also, the research team of the
IBM-approach had more human resources and used non-public lexicons or algorithms. Never-
theless, we suppose that our adapted approach outperforms better in the argument search case.
To this end, we compare the accuracy values of Bar-Haim et al. (2017a) and Bar-Haim et al.
(2017b) with our accuracy values on the IBM-corpus and our sample of the args.me-corpus.

If we do not force the stance classifier to classify the stance of each claim-topic-pair,
then the accuracy increases notably. There were some claim-topic-pairs for which the
stance classification was hard even for humans. Therefore, if we discard predictions where our
continuous model was unsure, we probably gain accuracy. To this end, the experiments include
tests for some threshold values τ to prove what effectiveness improvement would be possible if
the stance classifier has the possibility to deny the stance prediction. However, an increasing
threshold will decrease coverage.

Neither in terms of effectiveness nor in terms of efficiency it is a recommendation to
use all available features and subcomponents. Occam’s razor describes the principle not
to make a model complicated without a reason, for example in machine learning – or in other
words: the simplest solution is most likely the right one (Abu-Mostafa et al., 2017). In terms
of efficiency, it is trivial not to use all available features and subcomponents which consume
computation time. We want to prove that only a specific subset of features and subcomponents
is necessary for good predictions. Hence, we measure the effectiveness and efficiency for different
configurations which disable subsets of features and subcomponents. A basic strategy for mea-
suring the use of a single feature type in machine learning is to use the particular feature type
stand-alone, then using all feature types except the certain one and finally all feature types. We
consider that some feature types and subcomponents have parameters and hyperparameters by
an exhaustive search. We will compare the results afterwards.
An intriguing hypothesis regarding this central hypothesis is that it is not a good idea to save
computation time in the early stages of the analysis process. To prove this hypothesis, we
evaluate a configuration which uses the TT4J-PhraseChunker instead of the StandfordParser.

Further hypothesis: We presented three central hypotheses in this section. Although there
are lots of small research question besides or some peculiarities, respectively. We present them
in Section 6.3, too.

6.2 Results
This section visualizes a small portion of the results to give a statistical insight into the answer
in the next section. Values which we label with “IBM” are from this central paper by Bar-Haim
et al. (2017a). Values which we labelled with “IBM+” result from the improvements which the
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Figure 6.1: This plot compares the accuracy for different coverage levels: the preferred configu-
ration is black. The configuration which uses all features is grey. That means all required text
analysis engines including the Stanford Parser, the target identification with all features types
including the WordNet-Feature with a maximum search depth of 3, and all features types for
the contrast classification. Also, this plot contains both baselines: the simple heuristic in red.
The upper baseline is blue. This baseline uses the value which we annotated for sc, R(xt, st), st.
The used dataset is our sample of args.me

successor paper suggests (Bar-Haim et al., 2017b). Section 6.3 analyses these results regarding
the hypothesis which Section 6.1.2 presents. For that purpose we use the best configuration which
we observed in the experiments. The choice mainly considers the f1-score and accuracy, but also
the average runtime. Hence, we searched for a configuration which satisfied good effectiveness
and good efficiency. The chosen configuration uses the standard analysis engine, including the
Stanford-Parser. However, it does not include the contrast classification but a fixed prediction
value R(xc, xt) = 1. Furthermore, it uses all features-types for target identification. However,
we excluded the sentiment feature type and the Wikipedia feature type. The configuration
calculates the sentiment as Section 3.1.1 describes. If this suggested method does not find any
sentiment token then we return a default sentiment. The default sentiment is sc = 0.5 and
st = 0.75.

Figure 6.2, 6.1 and 6.3 represent the results for our stance classifier. Figure 6.4 takes into
account one of the three subtasks, the claim target identification. Appendix A.2 contains results
for experiences with the sentiment classification module and also the contrast classification
module. In general, all detailed results are listed in the appendix.

6.3 Analysis and discussion of the results and comparison with
other approaches

Now, we will analyse the results concerning our hypotheses. The analysis is based on the figures
in Section 6.2, but uses the results in Appendix A.2, too.

The approach which this thesis presents outperforms the current heuristic in args.me.
Figure 6.1 shows the proof of this hypothesis. Nevertheless, the current heuristic is not a low
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Figure 6.2: This plot compares the accuracy of the approach of Bar-Haim et al. (2017a) (in-
cluding its extension in green) with the best configuration of our approach observed in our
experiments. The marked dots are explicitly measured values. All other values of the graphs
are approximations. The experiments used the corpus of IBM except for the graph which we
labelled with “my approach on args.me”

baseline. The heuristic classifies 63% correctly of all argument’s premises in our sample of
args.me, our preferred configuration classifies 70% correctly. However, there are several con-
figurations which do not perform well to the heuristic. For example, one configuration achieves
only 56%. This configuration uses our full approach but the TT4J-PhraseChunker and does
not use the relation function which Bar-Haim et al. (2017a) presents in the contrast classifi-
cation. Hence, the right choice of feature types and learning models is essential to beat the
heuristic. Moreover, even the knowledge of the ground truth of the target does not guarantee
better results than the heuristic. Nevertheless, an accuracy increase of 0.075 and an f1-score
increase of 0.08 is notable. If we apply further improvement ideas which we have not imple-
mented until now then the recommendation to replace the heuristic with the stance classifier is
convenient. Furthermore, if the argument search engine considers the confidence value of the
stance classifier into the argument ranking then the advantage of the stance classifier becomes
even more notable: our approach achieves an accuracy of approximately 85% for a coverage of
23% of the claim-topic-pairs. This accuracy is only 3%-points worse than our approach, which
uses the ground truth knowledge in sentiment and contrast classification. An additional remark
is that the simple heuristic works for the corpus of IBM, too. It achieves 52% accuracy. Our
approach outperforms this in same specific configurations, but we noticed a specialisation of our
approach to argument search. Moreover, the simple heuristic outperforms our approach inside
the corpus of IBM in respect to the f1-score. It always predicts a PRO-stance. Hence, the recall
is 1. However, this is not an argument search case. Moreover, to predict always PRO would not
be helpful for an argument search engine.

The approach of Bar-Haim et al. (2017a) outperforms our adaptation on the IB-
M-corpus. However, our adaptation reaches better results on the args.me-corpus.
Figure 6.2 answers this hypothesis. The approach of Bar-Haim et al. (2017a) outperforms our
approach clearly on their dataset. This observation is reasonable since Bar-Haim et al. (2017a)
do not train their approach for the argument search in contrast to our approach. An interesting
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Figure 6.3: This plot visualizes the development of our approach with respect to our sample
of args.me by adding more and more features and sub-methods. The value for effectiveness is
the accuracy in blue. Besides that, this plot draws the PRO-CON-ration in green. Also, this
plot adds a further red graph for the efficiency – the average runtime of the configurations in
seconds. The feature additions are sorted as follows:

1. no features activated – always use default values (heuristic-baseline)

2. adding target identification without WordNet and sentiment feature type and Wikipedia
feature type, no contrast classification

3. adding Wikipedia feature type to target identification

4. adding contrast classification, but without WordNet relation functions and the own ap-
proach of IBM

5. using all features for Target Identification, but only with the TT4J-PhraseChunker and
add the WordNet-relation function to contrast classification

6. including verb phrases for the TT4J-PhraseChunker

7. using StanfordParser instead + using all features in target identification and contrast
relation
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Figure 6.4: This diagram visualizes the development of the claim target identification module
of our approach on the IBM corpus by adding more and more complexity. The value for effec-
tiveness is the f1-score on the phrase-level in blue. Besides that, this plot draws the f1-score on
the token-level in green. Also, this plot adds a further red graph for the efficiency – the average
runtime of determining the target of a claim. The baseline (random guess) reaches an f1-score
of 0.2 on the phrase level. The feature additions are sorted as follows:

-1: no features which calculate the similarity/distance to the topic, no sentiment feature type

0: using all features, but the WordNet-feature-type is still disabled

1-5: the WordNet-feature-type is enabled with the specified value of the maximum search depth

≥ 6: is too complex for execution on a typical laptop

54



Chapter 6. Evaluation

remark is that the accuracy of our approach does not increase notably over a decreasing coverage
on the IBM-corpus. In this case our approach wrongly predicts stances in the low-confidence-
area and the high-confidence-area. If the portion of remaining claim-topic-pairs is too low (for
example three), then the probability of having rough fractions and outliers is high. Therefore,
Bar-Haim et al. (2017a) stopped their experiment output at a coverage of 10%, which are 136
claim-topic-pairs in the case of the test set of the IBM-corpus. The part of the hypotheses which
claims that our adaptation outperforms on the args.me-corpus is hard to falsify since we can
not apply the approach of Bar-Haim et al. (2017a) directly on our sample. The implantation is
not public. We know that claims and topics of the IBM-corpus are in general more linguistically
complex than our sample. For example, the IBM-corpus contains claims like “Exposure to vio-
lent video games causes at least a temporary increase in aggression, and this exposure correlates
with aggression in the real world” – in opposite to our sample in which many claims are like
the example “Feminism is bad”. Nevertheless, a stance classifier on our sample must be robust
against other challenges (Section 3.3). However, we assess that the extended approach of IBM
would beat our approach at least in the low coverage areas, too, although it is possible that the
aspect of efficiency can be a pitfall for the approach of Bar-Haim et al. (2017a).

If we do not force the stance classifier to classify the stance of each claim-topic-pair,
then the accuracy increases notably. Figure 6.1 shows hints for this hypothesis for our
sample of args.me and Figure 6.2 shows it for the IBM-corpus. The increase of accuracy is
not so notable as in the approach of Bar-Haim et al. (2017a), especially on the IBM-corpus.
Nevertheless, there is an overall increase – at least a stepwise one. Both skips in the two curves
in Figure 6.1 are in the threshold area of [0.35, 0.4]. We have set a default sentiment of our
sentiment classification module to 0.5 and 0.75. The product of both is 0.375. Hence, the ratio
of default sentiment is approximately in the threshold area of [0.35, 0.375] on its highest point.
So, the influence of default sentiment predictions affects the accuracy value strongly. A threshold
higher than 0.375 discards all the default cases – a higher threshold results in lower coverage.
Hence, the accuracy with a lower coverage is free from the influence of default ratings. The
accuracy increases with decreasing coverage. Nevertheless, having an enabled default sentiment
is usually recommended to avoid zero-predictions because of multiplying sc = 0 or st = 0.

Neither in terms of effectiveness nor in terms of efficiency it is a recommendation
to use all available features and subcomponents. Recommendable figures for this hy-
potheses are 6.3 and 6.4. Hence, even the best-observed configuration which we use does not use
all available features and subcomponents. Using the full approach with all features including
maximum search depth of three in the WordNet-feature-type decreases the accuracy by 0.04
and it increases the computation time by 156% in comparison to our best configuration in our
experiments on our args.me-sample.

In terms of effectiveness: As we supposed, a complex model does not always lead to
better results. The target identification step does not show this obviously. However, the best f1-
score on the IBM-corpus achieves the feature type selection which excludes the WordNet-Feature
and the sentiment feature type. In general, the one-hot-encoding of the sentiment feature type
often leads to loose generalizations. The reason is the variety of encodings in therefore a weak
point for overfitting. In our training the dimensionality increases by 24, if the sentiment feature
type is activated. Hence, there exist encodings for which only one positive or negative instance
exists in the training instance set. That is not a promising representation of the general ground
truth function. For example, adding the sentiment feature type decreases the f1-score by 0.05
(and on the token level by 0.06). The use of the Wikipedia feature type is interesting, too. The
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enabling of this feature type slightly increases the f1-score on the IBM-corpus but can slightly
decreases exclusivity f1-score on our args.me-sample.
Another impressive result of the experiments is that enabling a feature type only to a small
degree (like a small maximum search depth in WordNet) can be rather harmful than helpful
(Figure 6.4). Also, the same effect can happen if a feature type gets too many degrees of
freedom. A maximum search of 4 in the WordNet-feature-type harms the prediction because a
distance of 4 can predict similarity although there is no similarity. For example, it is possible
to get from “feminism” to “accuracy” via “libber” and “Truth”. However, the trade-off of
complexity becomes evident in the contrast classification. It is more effective to disable the
contrast classification and always predict consistency than having a complex module for that.
Even the approach of Bar-Haim et al. (2017a) shows better results for the majority voting
than for their contrast classification approach in respect to full coverage. The argument search
engine args.me increases the effectiveness of the majority baseline. The full-text-search matches
primarily consistent conclusions. Hence, our sample of args.me contains only four contrastive
cases (2%). Moreover, the annotation of a contrastive targets relation is doubtable in two out
of four cases, for example “Obama” to “Abortion”. Therefore, Figure 6.3 shows a decrease in
accuracy at the point where we added the contrast classification. This figure shows a hint for
the hypothesis that saving computation time in the early stages can lead to notable accuracy
losses in the final result, too. Using the TT4J-PhraseChunker instead of the Stanford-Parser
decreases the accuracy by 2-8%-points, depending on which corpus is in use.

In terms of efficiency: The results are surprising at this point. First, the runtime mea-
surements show fluctuation. For example, the processing time is 229ms to create a feature rep-
resentation of one claim-target-pair, given all required text analysis annotations, in the contrast
classification if we consider all feature types. However, excluding the WordNet-features-type
increases the measured time by 16ms. This measurement is unexpected. A reason for that is
probably the workload of the CPU. The stance classifier is not the only running process, and
even if we try not to change the process diversity it is hard to get an environment without
fluctuations. Moreover, used services have different response times, too, for example in the
case of the Wikipedia-Feature-type. Nevertheless, our runtime measurements are reliable on
average. For example, they shows that an increase in the maximum search depth in WordNet
disproportionately increases the runtime per claim. In general, we proved our hypothesis as a
rule of thumb: a more complex model requires more computation time. In Figure 6.3 the valley
in the graph in the complexity level five to six is interesting. We used the TT4J-PhraseChunker
instead of the StanfordParser in these complexity levels. The reason is that parsing the claim
or the topic is one of the most time-consuming steps in the text analysis preprocessing and the
TT4J-PhraseChunker is way more efficient. In general, in the most configurations the stance
classification with its three modules is not the most time-consuming part, but the text analysis
preprocessing steps like tokenizing, parsing and general linguistic tagging. For example, the pre-
processing of a linguistically complex claim takes approximately 200ms and even less complex
claims can cost 100ms.

Further hypothesis and analysis: The results and logging outputs reveal way more insights
into the processing and understanding of stance classification. We will now present a few further
points:

Target Identification: The target identification is not a trivial task in linguistically com-
plex sentences. For example, the Stanford-Parser finds eleven noun phrases (target candidates)
in the claim “Exposure to violent video games causes at least a temporary increase in aggression

56



Chapter 6. Evaluation

and this exposure correlates with aggression in the real world” in the IBM-corpus. Hence, the
probability of getting the right phrase by chance is 9%. The high number of target candidates
results in requiring of having a very strong target identification module. However, conclusions
and queries often are linguistically not very complex in the argument search case. For exam-
ple, “Feminism is bad” contains only one target candidate which is the true target. Hence, we
can save computation time in this module. For example, the f1-score of taking only syntactic
and positional features is only by 0.02 worse than taking the best configuration in this case.
Nevertheless, we can save 94% of computation time for calculating the feature representation.

Sentiment Classification: This step is the weak point of our approach. Two out of four
variables in the central stance formula (Equation 3.5) are sentiment values. Just one mistake in
the sentiment classification can lead to a wrong stance prediction. For example, if we predict
all values correctly while miscalculate the sentiment of the claim (negative instead of positive
and vice a Versa) then the stance prediction is wrong. Unfortunately this central module does
not achieves outstanding accuracy values. The best configuration calculates the right sentiment
in only 68% of the cases on the IBM-corpus. The majority baseline is 56.2%. Hence, (Bar-
Haim et al., 2017a) concentrate on the following paper to improve that module (Bar-Haim
et al., 2017b). The fact that the promising sentiment approach of Stanford does not reach
the accuracy of the majority baseline is fascinating. One problem was the handling of neutral
predictions and the issue that Stanford predicts the overall sentiment, but not the sentiment
regarding the target. A further interesting observation is that our approach tends to label a
claim/ topic with a positive sentiment because of the default sentiment. This tendency becomes
evident by looking at the PRO-CON-ratio of 0.266 on the IBM-corpus of the configuration which
uses default values for all steps except the sentiment calculation of the claim.

Contrast Classification: The relation function which Bar-Haim et al. (2017a) presented
depends strongly on a good database. This relation function with our database does not outper-
form well. Hence, the use of this stand-alone relation function results in an f1-score of 7% on the
IBM dataset. However, the precision of our approach is very promising, achieving a precision pf
92% by using the best configuration on the IBM-corpus.

Whole approach: It seems that linguistically complex databases lead to more specific
behaviour of the stance classifier after training the machine learning parts. For example, the
PRO-CON-ratio is far more variable in the case of the IBM-corpus than of our sample of the
args.me-corpus.
Another interesting observation is that our approach has outliers with respect to efficiency. For
example, our approach proceeded stance predictions for a claim-topic-pair in 14ms, another pair
in 9.6s on our sample of args.me. One reason is technical fluctuation. Another reason is the
varying linguistic complexity. For example, one claim-topic-pair in our sample is “Feminism”-
“Feminism”.
Also, it is interesting to observe that the initial stance predictions take more time than stance
predictions after a longer runtime of the stance classifier. For example, discarding the first
10% of runtime-measurements of claim-topic-pairs decreases the average computation time by
approximately 100ms. We expected such an effect. Our implementation mainly causes this
increase in efficiency over time because of the principle of storing already computed results
of deterministic complex time-independent functions. We have already presented the example
of our WikipediaTitleRecognizer-analysis-engine: the engine uses a map-structure as cache.
Hence, phrases which have appeared beforehand will not in general start a new HTTP-request
but the engine can label them in O(1). This behaviour is especially helpful for common noun
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phrases like “we”. Another example of an efficient implementation in long-time-runs is our
implementation of the TopicAnnotationStorage which stores, also in an efficient HashMap,
already processed topics with their annotations. Hence, our implementation only calculates the
annotations for a query once. Moreover, if a user enters a topic which has was been already
queried then the stance classifier has the annotations in O(1).
Another interesting observation is the slight increase of the f1-score and of the accuracy in
one configuration series where we have modified the target identification module. We have
modified it by using the ground truth first and afterwards predicting it without feature types
of sentiment and WordNet. This unexpected behaviour appears while using our sample of
args.me and a default value for the contrast classification. Because of this, only the sentiment
classification requires target identification. By analysing the logs, it turns out, that the target
prediction marks in rare cases the whole claim, phrases like “we” or a possibly long other phrases.
Our sentiment classification module ignores sentiment tokens inside the target. Therefore the
target sometimes hides misleading sentiment tokens and leads to a correct stance classification.
However, we suppose that this anomaly might be a kind of statistical noise and might disappear
with a broader sample – or further improvements of the sentiment classification module.
Furthermore, we observed that our approach mostly had difficulties with claim-topic-pairs in
which the claim compares things like “Hitler was Worse than Stalin” towards ”Hitler” (example
of our sample of args.me). Also, our approach had difficulties in predicting the stance in cases
which are hard for humans, too. That refers especially to claim-topic-pairs, where the annotators
disagree with each other.
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in this final chapter our work will be summarized and reflected. We want to answer the question,
whether we succeeded in building a suitable stance classifier for the argument search. Is that
stance classifier able to sort the fetched argument’s premises to the correct side – PRO or CON?
To that end, we look again on the results of the previous chapter. We summarize our work on
this base in Section 3.3. This section presents some additional remarks to improve efficiency.
The long working process on this thesis resulted in a complex application. However, we have
some additional ideas which were, however, too time-consuming to integrate or not in the scope
of stance classification alone. Section 7.2 gathers all noteworthy ideas we have to improve
effectiveness for future work.
There is the Section 7.3 at the end. That section rounds off this thesis and comes back to a
broad view on the stance classification problem. It contains the final remarks and reflects the
whole work.

7.1 Summary

In the previous chapter we evaluated our approach to present an intelligent solution for stance
classification in the argument search. We notice that in the argument search engine args.me
the current heuristic is a very efficient approach for stance classification, which results in an
accuracy of 63% on our sample of args.me. Our approach increased accuracy by 0.075. The
simple heuristic also reaches 52% on the IBM-corpus. This is 0.11 worse than the accuracy of
the approach of Bar-Haim et al. (2017a). In the end, it is the decision of the provider of an
argument search engine to use either a simple, very efficient heuristic or our approach, which
is more effective. On the one hand our approach would increase the satisfaction of users who
search separately for PRO or CON arguments. If a user is interested, for example, in PRO
arguments and reads a long argument which is labelled as PRO, just to realize in the end that
the argument is a CON -argument then the user can be quickly annoyed. On the other hand
the search engine must deliver a reply on demand. Hence, the stance classifier must calculate
all requested claim-topic-pairs efficiently, too. There is a problem exactly at this point. Brutlag
et al. (2008) shows that latency of three seconds is critical and more than five seconds fatal
for daily use. Hence, we inferred that we should not exceed 150ms for each claim-topic-pair.
Our configuration exceeded this time (203ms). There were only a few configurations which
were below this time boundary. Some of them partly use the ground truth data (our manual
annotations). Hence, they are not practical for use in the running system later. Also, the other
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fast configurations use the TT4J-PhraseChunker, which leads to smaller accuracy and f1-score-
values than the simple heuristic. Hence, the simple heuristic is more effective and efficient in
this case. However, the computation time of 203ms in our approach is not as critical as it seems.
We have already discussed the effect of efficiency converge. Because of the efficient storage
of intermediate results our approach becomes faster by time. Commonly processes run a long
time in servers. Moreover, a common modern server mostly provides notably more computa-
tion power than the laptop on which we evaluated our approach. Also, we notice that most of
computation time is not consumed by the stance classifier itself in the many configurations but
by the engines preprocessing in text analysis, especially the Stanford-Parser for long argument’s
conclusions. If preprocessing happens in the indexing process, which does not have to compute
on-demand, then we can save computation time, too. Apache UIMA provides possibilities to
store and load annotated and therefore preprocessed objects (Ferrucci and Lally, 2003). On top
of that, we observed that in the majority of cases in args.me the stance classifier does not get
20 different conclusion-query-pair, but only a few. Conclusions overlap, and there are mostly
several argument’s premises for one conclusion. For example, the top-20-results for the query
“feminism” contain only two different conclusions: “Feminism” and “Feminism is not sexist.”1.
Also, the server has the opportunity to parallelise the different stance computations. Hence, the
efficiency problem of our approach is not as critical as it seems at first sight and is furthermore
a solvable problem in the end.
Hence, we presented a suitable solution for the stance classification in argument search. We
looked at the differences between the approach of Bar-Haim et al. (2017a) and the argument
search case and integrated the approaches to face the differences. We used the novel idea to sep-
arate the stance classification into three subproblems, too: the claim target identification (which
we extended to the topic, too), the claim sentiment classification (which we also extended to the
topic) and the contrast classification. In the process of adaptation and evaluation we discovered
a weak point in this novel idea: this idea only works if all submodules work correctly. If only
one of the three modules is weak then the whole stance classification process is affected. For
example, if the target identification module does not work well then it tags a false phrase as
the target. The two other modules work with the false target and will probably deliver wrong
results. For example, if an argument concludes “Clinton is better than Trump”, and the ground
truth target is “Clinton” but the first module tags “Trump” as the target, the claim sentiment
classification process will return −1 instead of 1, which would be the right answer. The same
problem holds for the sentiment classification and the contrast classification module. Also, if
only the last two modules are very unsure with their prediction and output a value which is
almost 0 then the complete result will be very unreliable. Moreover, even if all modules are
relatively sure, for example, they output the value 0.8 then the final result is not absolutely
speaking: 0.83 = 0.512. Nevertheless, the multiplication of the single values is sensible in the
end – it is an excellent method to reduce return values to a single stance variable, which includes
a confidence vote.
Nevertheless, our approach, which bases on this novel idea, is promising in the case of ar-
gument search. We presented a solution which is compatible with the common argument
model (Wachsmuth et al., 2017) with our adapted Equation 3.5 and with useful extensions,
for example, in the word embeddings area: the Word Mover’s Distance. Our approach uses lots
of methods and approaches like machine learning (mainly SVM – in the target identification and
contrast classification), lexicon-based algorithms (in the sentiment classification), deep learning
with word embeddings and lots of non-public methods which we reimplement and make suit-
able for the argument search. We faced the issue with claims and topics which are not correct
sentences linguistically. We extended primitive analysis engines to prevent exceptions. We in-

1https://www.args.me/?q=Feminism (15.07.2019)
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troduced default routines and values and handled punctuation mistakes in claims or queries,
respectively, to a certain degree. Furthermore, we shows that the robust Stanford-Parser, which
is slower in general than the TT4J-PhraseChunker, is an excellent choice for the argument
search case. It builds a good base for the target identification module. Hence, we tried to face
lots of challenges in natural language processing. We faced the challenge of negation in natural
language in the sentiment classification step, too. Bar-Haim et al. (2017a) introduced the idea
of a sentiment shifters lexicon. We used this idea to detect the various expressions of negations
in terms of sentiment. For example, the negation word “not” inverts the sentiment of “bad” in
“Clinton is not bad” and therefore the sentiment towards the target “Clinton” is turned into
positive.

To summarize all these insights into the research: we succeeded in building a suitable adap-
tation of the approach of Bar-Haim et al. (2017a) concerning the variance of conclusions and
queries on the Internet and concerning efficiency. Our non-commercial implementation imports
lots of public methods and analysis engines and also implements lots of other recommended pro-
cedures. We considered adaptation and extensions for improving effectiveness and efficiency.

7.2 Outlook and future work

Stance classification will play a significant role in future, too. In the case of args.me the stance
classification implementation described in this thesis is meant to replace the simple heuristic
which is used currently. Hence, we programmed the implementation related to this thesis in
such a way that the integration is only minor work.
Chapter 4 presents some extensions to the approach of Bar-Haim et al. (2017a). The goal is to
optimize the stance classification for the use in argument search. This section discusses some
additional ideas to potentially improve the algorithm. These ideas are not implemented or
validated. However, they are based on the related work and the experiences with the argument
search.

7.2.1 Including contextual features

Bar-Haim et al. (2017b) have already suggested to include contextual features for the claim
sentiment classification. However, the presented approach is not applicable to the argument
search case because of the lack of a syntactically direct textual context of the claim in the
argument’s premises. Although the web crawler of the debating portal (Wachsmuth et al., 2017)
stores other contextual features like the discussion which contains the processed argument
On the one hand the keywords of the request appear in many cases inside the argument’s
premises. One idea is to consider the sentiment of the sentences which contain a central keyword
from the query. For example, if a user searches for “feminism” and there is a post of second
user who attacks and denigrates feminism (sc = −1), then the second user is likely to have a
negative sentiment in the sentences he writes about feminism.
On the other hand we can make use of the other contextual sources. 87%2 of all arguments
args.me uses come from a debate portal where every user who has created a profile has writing
access (Ajjour et al., 2019). Every profile is public and contains information about other debate
topics the user was involved. This overview is valuable information: based on the idea of
Hasan and Ng (2013) there is the possibility to apply author constraints, too. A practical
implementation approach is to request the author and his related debates including his stance

2This percentage based on the upcoming update of the args.me database. The current argument index (July
2019) percentage is 72% (Wachsmuth et al., 2017)
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towards the debate topics for each PRO/CON argument (which is in the common argument
model of Wachsmuth et al. (2017) a PRO/CON premise of an argument)) in the indexing
process. If the crawled website does not offer that then we suggest to store an empty list of
the author’s debates. Hence, every argument’s premise in the common argument model has, in
addition, an opinion vector containing further debates topics. When the stance of an argument’s
premise is requested the algorithm can search through the opinion vector. If there is an entry
which matches exactly the query or is very similar to it, then the stance to the entry can be
considered in addition to the output of the main approach (Chapter 3). The similarity can
be measured with the Word Mover’s Distance, for example. If an entry has a Word Mover’s
Distance below a certain threshold this entry has a (weighted) stance vote. Consider the query
“feminism is an illness”. Now we have a claim (debate title) “women’s quota is necessary” with
a PRO argument which contains several times the word “feminism”. Hence, it is retrieved.
However, it is hard to resolve the claim toward the query. Consider that the author wrote a
CON argument to another debate with the title “feminism is cancer”. Word Mover’s Distance
would recognize a small distance because of two identical words and a word pair which is related.
Hence, the user argues against “feminism is cancer” and therefore probably against “feminism
is an illness” in the debate with the claim. We detected the right stance without processing
the claim “women’s quota is necessary”. Also, we can infer all other stances of the argument’s
premises (PRO/ CON arguments) of this particular debate with that claim now.
A practical realisation of this approach based on the author’s constraints can be to predict the
real-valued stance of the claim-topic-pair as the first feature for a machine learning process.
The second feature is the number of entries in the opinion vector, for which the Word Mover’s
Distance is below a certain threshold. A third feature can be the average of all stances of those
entries. To receive a more realistic value we suggest to inverse-weight the entries with their
distances to the topic and the time difference to the argument’s premise the stance classifier
currently processes. This second weighting has its reason in the behaviour that the probability
of an opinion change increases with the time difference. This implementation is compatible with
claims from debate portals which do not provide such user-debate-history-references. In this
case, the second and third feature would be 0.
On top of that, the indexing process can try to generate a complete network of for and against
groups of users as Stede and Schneider (2018) explain.

7.2.2 Additional features types in the three single subtask of the basic ap-
proach

Each step in the original approach of Bar-Haim et al. (2017a), which is presented in Section
3.1, may be improved by adding additional concepts. However, each additional feature may
decrease efficiency. Therefore it is essential in the future work to find out which effectiveness
improvements are possible without decreasing efficiency notably.

Additional features types for the target identification step: Most arguments args.me
use come from https://www.debate.org (Ajjour et al., 2019). Hence, that debate portal may
be helpful in the target identification subtask because it fits directly into the argument search
case. Bar-Haim et al. (2017a) already suggested taking into account the Wikipedia header
occurrences as a feature type by predicting the target confidence value of a claim candidate.
Based on that there is the idea to use the search service of https://www.debate.org, too. The
algorithm can enter the candidate phrase via the advanced search and can restrict the search
range to topics. We use topics as claims. If the algorithm inputs a controversial phrase like
“feminism”, he receives lots of debates (217). Therefore, it is an indicator that this phrase
(containing one word) is the target. If the algorithm inputs another phrase like “an advantage”,
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it receives only 18 results. This number is reasonable because this phrase is probably not the
target of a claim or topic.

Additional features types for the sentiment classification step: The problem with the
approach of Bar-Haim et al. (2017a) is, that this approach needs an extensive token sentiment
tagger. If the tagger labels no token in a claim with a sentiment, all following steps inside
the sentiment classification are useless. Bar-Haim et al. (2017b) already suggested a solution
to extend the sentiment lexicon the token sentiment tagger uses. Also, Section 4.2 provides
an alternative way to attenuate the problem. Nevertheless, there is a third option to face the
problem. The approach is to calculate the sentiment prediction with the sentiment classification
of our approach. Then, in addition, other already existing sentiment classifiers which get the
whole claim/ topic as input for predicting a sentiment value. On the base of the evaluation of
Bar-Haim et al. (2017a) we can assume that ignoring the unique role of the target to predict
the sentiment score is not that critical. If we use x additional sentiment classifiers then we have
x + 1 predictions. Hence, if we train an SVM, for example on these x + 1 predictions then we
may have a more accurate and robust sentiment classification.

Additional features types for the contrast classification step : Apart the full im-
plementation of this step including the full anchor pair generation we can try to increase the
effectiveness and efficiency in the detection of the contrastive word. It is more difficult to de-
tect contrastive pairs than consistent pairs because there exist many similarity functions for
consistency. Until to now, we use a WordNet and the cue phrases feature for directly con-
trast detection. However, the WordNet do not contain all contrastive relations and quickly
become inefficient. The cue phrases feature type needs a rich query log database and tends to
be inefficient, too. There is potential to increase efficiency by applying more intelligent data
structures. However, an interesting attempt can be the use of word embeddings. Hence, vec-
tor operations on word vectors often preserve semantic relationships (Kusner et al., 2015) like
vec(healthy) − vec(cancer) + vec(good) ≈ vec(bad). This example of contrastive relationships
leads to the attempt proposal to use word embeddings for detecting contrastive words or even
contrastive phrases for future work. Moreover, Trask et al. (2015) presented an accurate and
fast method for solving the problem of word sense disambiguation. The sense of a word strongly
depends on its context, for example, the POS tag. Therefore it determines whether a word with
its sense is consistent, contrastive or none of both to another word. Hence, a fitting Word2Vec
model and such an approach can improve the effectiveness and efficiency of the contrast classi-
fication step notably.

7.3 Reflection and conclusion

This thesis is a contribution to the research on stance classification. This research topic is not
novel. Section 2.2 has already reported about the related work. The tendency is an increase of
the accuracy / f1-score of the approaches over time. However, it is hard to compare the accuracy
/ f1-scores of the many different approaches. Stance classifiers would suffer from a lack of porta-
bility if the classifier were trained on a specific domain (Vilares and He, 2017). The writings and
expression styles differ from author to author and from group/domain to group/domain (Khan
et al., 2016). For example, congressional debates differ from debates in public forums (Hasan
and Ng, 2013) which are relevant for the case of argument search. Even our approach shows
notable differences in applying it to the case of our central paper (Bar-Haim et al., 2017a) and
the argument search case, the args.me search engine.
On the one hand, we did not have to face issues which other areas of application have to. For
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example, implicit argumentation was out of our scope. On the other hand, we faced challenges
which other stance-classification-approaches do not have like incorrect natural language and the
on-demand-requirement. We presented a combination of effectiveness and efficiency explicitly for
the first time in the stance classification research so far. We analysed trade-offs and discovered
the side-effects of replacing parts in the text-analysis-pipeline, which includes machine learning.
We applied different learning models and configuration to determine a suitable result. Hence,
we contribute a bunch of ideas to stance classifications in argument search. We expect that our
approach will improve accuracy of the stance labels in argument search engine args.me. This
improvement will lead to increased user satisfaction. Furthermore, the implementation of the
other ideas may improve accuracy even more. We trained our stance classifier on the English lan-
guage, but we can adjust it for even more languages, too. All these improvements may increase
the popularity of this search engine. The typical Internet user does not visit argument search
engines until now. We hope that args.me (or/ and other argument search engines) will change
that in the future. This change is probably the base for a new experience with computational
argumentation for the everyday user. The aim is that computers learn step by step to help the
standard user in his inspections of persuasions or decision makings. It becomes more and more
relevant to provide a balanced picture of controversial topics with PRO and CON arguments.
Argumentation stays important. This relevance especially yields in our days with used phrases
like “fake news” and “filter bubbles”. Stance classification in argument search is an essential
part of this vision. Besides that, a good stance classifier in argument search can be the base
for applications on top of that. An application which generates argumentative texts becomes
possible, for example.
All in all, the user-generated content, including arguments, increases day by day. Stance classi-
fication helps to structure and sort that content and partly brings a system into reality which
provides more and more information with increasing accuracy. This thesis is a contribution to
that research process, which may help in further research.
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Appendix
A

A.1 The feature of paths in WordNet

Bar-Haim et al. (2017a) suggested “path in WordNet” as a feature type for the target identi-
fication without further comment. A feature type for machine learning must be one or more
real-valued numbers. Hence, we implemented an algorithm to achieve that. The algorithm works
as follows:

1. Previous analysis engines segmented the claim and the topic already into tokens. Tokens
which are in the candidate phrase and the topic target are extracted in the first step. In
the case of argument search the algorithm does not know the target of the topic in the
target identification step. Therefore all tokens must be considered. However, this is in
most cases no disadvantage because of the query behaviour of the user. The majority of
queries contain only one or two tokens and already represent the target.

2. The algorithm filters the tokens by their POS-tags. Not all tokens are worth considering in
this distance feature calculation, for example, determiners. One example is “the”. There
should be no difference in the semantic distance if the input for a claim target candidate
is “creator’s existence of the universe” or “creator’s existence of universe”. Tokens like “’s”
or punctuations (on the phrase level) are not helpful either.

3. The algorithm calculates the distance for each pair of a relevant claim token and topic
token. The sub-method and works as follows:

(a) If the two words of the pair are equal, return 0.

(b) Else: A collector searches for all WordNet-Relations for the word on the left side of the
pair – the source. The sink, a token of the topic, is fixed. Relations are another words
in the same sense group, called the synset. For example, “universe” and “creation” are
synonyms in the sense of everything that exists anywhere. There are other relations,
too. Each synset contains pointers to antonyms, hypernyms, words regarding the
domain or instances and further pointer types. For example, “God” is an instance of
the term “creator”.

(c) The algorithms calculate the distance of each word, which the collector lists to the
sink and returns the minimal distance increased by one.
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4. The collector of the main method fetches the distance. For example, the distance of the
pair (existence, existence) = 0, they are equal. Hence, a target candidate containing
“existence” seems to be related to the topic containing “existence”. Also, the algorithm
does not ignore the other cues and sorts the pairs. Although, we do not have to take into
account all distances. How many distances we should consider depends on the number of
relevant tokens. The reason is that every relevant token modifies the semantic meaning of
a phrase. If we have two long texts, a token match hardly means anything, but if both
texts contain exactly one token then a match is significant. Another example: if the input
is “existence” and “existence” then the distance should be zero. If the input is “existence
of Trump” and “God’s existence” then the algorithm has still (existence, existence) = 0,
but both phrases are not significantly related to each other any more. Therefore, the
algorithm uses the following efficient heuristic: it considers the number of pairs which are
equal to the maximum number of the claim target’s relevant tokens and the topic target’s
relevant tokens. The algorithm weights the distances to mention the following fact: two
phrases tend to be more related to each other if a huge number of tokens match but there
is only one exception than there are only one match and one exception. We suggest an
inverted-modified logistic regression function as a weight function.

5. Distances above 1 are possible. Therefore, we suggest a normalization of the outputted
distance value.

An example related to the description figures A.1.
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Figure A.1: This figure presents the self-composed algorithm of the WordNet-Path-Feature.
Here as an example, the claim target candidate is the noun phrase “creator’s existence
of the universe” (left) and the topic target “God’s existence” (right). Each blue node
is a token. However, only three tokens on the claim’s side and two tokens on the tar-
get’s side are relevant – a filter disables the other tokens, marked in azure. The con-
nections between the left and the right side are the minimal path through the WordNet
(brown nodes) to the other word of a word pair. In the example we would have the set
{(existence, existence) = 0, (creator,God) = 1, (universe, existence) = 1, (universe,God) =
3, (existence,God) = 4, (creator, existence) = 6}. Hence, the algorithm would consider the
subset {(existence, existence) = 0, (creator,God) = 1, (universe, existence) = 1} in the exam-
ple because of three relevant tokens on the claim’s side. Hence, the final distance for the example
is 0 + 1 · 2

2+e + 1 · 2
2+e2 ≈ 0.64
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A.2 All results from the evaluation (effectiveness + efficiency)

This section only lists the results of this thesis. Section 6.1 describes the experimental setup.
Section 6.2 visualizes these results graphically and describes them. The analysis is shown in
Section 6.3. This section contains Table A.1, A.2 and A.3.

Moreover, this appendix presents all results of the validation of the whole stance classi-
fier. The possibilities of combinations are various. Hence, we give an overview and introduce
abbreviations for the later use in the tables:

1. The text analysis preprocessing pipeline (abbreviation: Pre)

• The standard pipeline which Chapter 5 describes
• the standard pipeline, but with the TT4J-PhraseChunker instead of the Stanford

Parser (abbreviation: TT4J)
• the standard pipeline with the TT4J-PhraseChunker + tagging verb phrases as rel-
evant phrases for the target identification, too (abbreviation: TT4J+VP)

2. The target identification step (abbreviation: Targ)

• the approach which Bar-Haim et al. (2017a) suggested – Section 3.1.1 (abbreviation:
IBM )
– ... with all features including the path in WordNetFeature with the maximum

search depth of x (abbreviation: +W:x)
– ... with all features excluding the Wikipedia header feature type (abbreviation:

-Wiki)
– ... with all features excluding the sentiment relation feature type (abbreviation:

-S)
• taking the ground truth (abbreviation: ground)

3. The sentiment classification step – once for the claim (abbreviation: Sent-C) and a second
time for the topic (abbreviation: Sent-T)

• the approach which Bar-Haim et al. (2017a) suggested with a default sentiment of
0.5 – Section 3.1.1 (abbreviation: IBM )
• the approach of Stanford (Socher et al., 2013) (abbreviation: Stan)
• taking the ground truth (abbreviation: ground)
• taking a default value. The majority have a positive sentiment, especially the topic.
The search queries often consist of only one to two tokens. Hence, we can assume a
positive sentiment. Hence, the default value is 1 (abbreviation: 1 ).

4. The contrast classification step (abbreviation: Cont)

• the approach which Bar-Haim et al. (2017a) suggested – Section 3.1.1 (abbreviation:
IBM )
– ... with all features excluding the feature type of reachability in WordNet via

synonym-antonym chains (abbreviation: -W )
– ... with all features excluding the relation function which Bar-Haim et al. (2017a)

suggested (abbreviation: -IBM )
• taking the ground truth (abbreviation: ground)
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• taking a default value. Especially in the argument search case only a negligibly
small part of claim-topic-combinations has a contrastive relation. The reason is
in the retrieval step in the argument search engine which is based on a full-text
search (Wachsmuth et al., 2017): contrastive targets are hard to recognize with that
method. Therefore, the default value is 1 (abbreviation: 1 ).

All abbreviations in combination result in a specific configuration. For example, a setup with the
abbreviation “Pre|Targ:ground|Sent-C:IBM|Sent-T:1|Cont:IBM-W-IBM” is an algorithm with
the standard text preprocessing pipeline. Furthermore, it uses the ground truth target and a
default value of 1 for the sentiment of the topic. However, it uses the approach which Bar-Haim
et al. (2017a) suggested for the sentiment prediction of the claim. Also, the algorithm uses the
suggested approach for the contrast classification. However, it does not use the feature type of
reachability in WordNet via synonym-antonym chains and does not use the relation function
which Bar-Haim et al. (2017a) suggested.
Table A.4 contains the results from experiments without a threshold. The stance classifier is
forced to predict a stance for every claim-topic-pair.
Table A.5 then presents a test with an activated threshold.

73



A.2 All results from the evaluation (effectiveness + efficiency)

Enabled features chosen
learning
model

�
squared
error

f1-score precision � time

None (Baseline) Random - 0.201 (0.2) 0.201 (0.2) < 1ms
Only syntactic / positional fea-
tures

SVM (c =
0.1)

0.293 0.729
(0.739)

0.729
(0.757)

2ms

Only Wikipedia feature SVM (c =
0.1)

0.460 0.296
(0.335)

0.296
(0.538)

3ms

Only topic relatedness fea-
tures, no WordNet

SVM (c =
0.1)

0.261 0.531
(0.608)

0.531
(0.675)

30ms

syntactic / positional features
+ topic relatedness features

SVM (c =
0.1)

0.264 0.745
(0.777)

0.745
(0.806)

38ms

All except Wikipedia feature,
no WordNet

SVM (c =
0.01)

0.227 0.751
(0.771)

0.751
(0.793)

36ms

All except sentiment features,
no WordNet

SVM (c =
0.01)

0.240 0.752
(0.77)

0.752
(0.802)

34ms

All except WordNet SVM (c =
0.01)

0.297 0.705
(0.714)

0.705
(0.767)

42ms

All (WordNet: max-depth: 2)
except Wikipedia feature +
sentiment features

SVM (c =
0.01)

0.31 0.743
(0.771)

0.743
(0.791)

56ms

All (WordNet: max-depth: 2)
except Wikipedia feature

SVM (c =
0.75)

0.271 0.726
(0.757)

0.726
(0.762)

53ms

All (WordNet: max-depth: 2)
except sentiment feature

SVM (c =
0.01)

0.313 0.737
(0.762)

0.737
(0.779)

59ms

All (WordNet: max-depth: 1) Decision
tree

0.233 0.645 (0.7) 0.645
(0.753)

45ms

All (WordNet: max-depth: 2) SVM (c =
0.5)

0.27 0.73
(0.759)

0.73
(0.762)

60ms

All (WordNet: max-depth: 3) SVM (c =
0.1)

0.26 0.738
(0.765)

0.738
(0.764)

76ms

All (WordNet: max-depth: 4) SVM (c =
0.5)

0.271 0.7 (0.726) 0.7 (0.735) 87ms

All (WordNet: max-depth: 5) SVM (c =
0.75)

0.329 0.726
(0.749)

0.726
(0.756)

276ms

Table A.1: This table lists the results of the isolated claim target identification step on the
test set of the dataset of Bar-Haim et al. (2017a). The descriptions for the single feature types
are shown in Section 3.1.1. We trained several learning models for each feature configuration.
Hence, some learning models outperform other learning models which we prefer in the case
of activation of all features in different feature configurations. The second column shows the
best learning model out of twelve for every configuration. As can be seen all learning models
are regressors. Therefore, the third column shows the mean squared error of the real-valued
predictions. All remaining values assume conversion of the target confidence values to a fix
prediction, which marks precisely one target candidate as the target. A target is a phrase – the
first number represents the score on the phrase level, the number in brackets on the token level.
The last column represents efficiency. The listed times are the average processing time for each
claim to calculate the feature representation for all containing claim candidates, given all text
analysis annotations. A claim contains five claim candidates in average. The maximum depth
of five of the WordNet-feature-type is caused by an overload of the computer for higher values.
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chosen method � squared error accuracy � time
Random guess (baseline) 1 0.5 < 1ms
Approach of Bar-Haim et al. (2017a)
without default sentiment

0.815 0.505 9ms

Approach of Bar-Haim et al. (2017a)
with default sentiment −1

1.172 0.666 9ms

Approach of Bar-Haim et al. (2017a)
with default sentiment 0.5

0.888 0.677 9ms

Approach of Bar-Haim et al. (2017a)
with default sentiment 1

1.128 0.677 9ms

Stanford 0.931 0.446 53ms

Table A.2: This table lists the results of the isolated sentiment classification step on the
test set of the dataset of Bar-Haim et al. (2017a). The descriptions for the approach of Bar-
Haim et al. (2017a) is in Section 3.1.1. “Stanford” means the sentiment approach of Socher et al.
(2013). Stanford does not calculate the sentiment towards the target but it calculates the overall
sentiment. The time column represents the whole averaged processing time for determining the
sentiment of a claim. All listed methods output real values in the range of −1 to 1. Hence, the
averaged squared error based an the real values. The accuracy relates to a discrete sentiment
prediction, that is a mapping to −1 or 1

Enabled features chosen
learning
model

�
squared
error

f1-score precision � time

None Random - 0.5 0.5 <1ms
None (Baseline) Majority

voting
- 0.886 0.796 <1ms

Only similarity features Decision
Tree

0.941 0.667 0.929 8ms

Only WordNetFeature K-Star 0.865 0.626 0.939 5ms
Only IBM feature SVM (c =

10)
1.056 0.074 0.16 177ms

All except WordNetFeature SVM (c =
0.5)

1.737 0.596 0.957 245ms

All except IBM feature K-Star 0.942 0.697 0.914 11ms
All K-Star 0.93 0.689 0.92 229ms

Table A.3: This table lists the results of the isolated contrast classification step on the test
set of the dataset of Bar-Haim et al. (2017a). The descriptions for the single feature types are
shown in Section 3.1.1. We trained several learning models for each feature configuration. Hence,
some learning models outperform other learning models which we prefer in the case of activation
of all features in different feature configurations. The second column shows the best learning
model out of twelve for every configuration. As can be seen all learning models are regressors.
Therefore, the third column shows the mean squared error of the real-valued predictions. All
remaining values assume conversion of the prediction to a fix label: contrastive or consistent.
The last column represents efficiency. The listed times are the average processing time for each
claim-target-pair to determine the contrast, given all text analysis annotations.
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Configuration f1-score accuracy PRO-
CON-
ratio

� time

-|-|Sent-C:1|Sent-T:1|Cont:1 (heuristic) 0.684;
0.627

0.519;
0.625

1; 0 <1ms

-|-|Sent-C:ground|Sent-T:ground|Cont:ground 0.998;
0.88

0.998;
0.88

0.04;
-0.01

<1ms

Pre|Targ:IBM+W:3|Sent-C:IBM|Sent-
T:IBM| Cont:IBM

0.492;
0.67

0.503;
0.66

-0.083;
0.05

0.64s;
0.52s

Pre|Targ:IBM+W:3|Sent-C:IBM|Sent-
T:IBM| Cont:IBM-W-IBM

0.502;
0.65

0.503;
0.645

-0.044;
0.02

421ms;
206ms

Pre|Targ:IBM+W:3|Sent-C:IBM|Sent-
T:IBM| Cont:1

0.57;
0.712

0.519; 0.7 0.199;
0.07

419ms;
212ms

Pre:TT4J|Targ:IBM+W:2|Sent-C:IBM|Sent-
T:IBM| Cont:IBM-IBM

0.446;
0.562

0.489;
0.555

-0.177;
0.02

159ms;
101ms

Pre:TT4J+VP|Targ:IBM+W:2|Sent-
C:IBM|Sent-T:IBM| Cont:IBM-IBM

0.456;
0.567

0.491;
0.555

-0.171;
0.04

145ms;
124ms

Pre|Targ:ground|Sent-C:IBM|Sent-T:IBM|
Cont:1

0.562;
0.683

0.52;
0.675

0.152;
0.04

209ms;
101ms

Pre|Targ:IBM-S|Sent-C:IBM|Sent-T:IBM|
Cont:1

0.562;
0.712

0.519;
0.7

0.157;
0.07

355ms;
235ms

Pre|Targ:IBM-S-Wiki|Sent-C:IBM|Sent-
T:IBM| Cont:1

0.561;
0.712

0.516;
0.7

0.163;
0.07

256ms;
203ms

Pre|Targ:ground|Sent-C:Stan|Sent-T:IBM|
Cont:1

0.559;
0.593

0.543;
0.575

0.034;
0.08

291ms;
147ms

Pre|Targ:ground|Sent-C:IBM|Sent-T:Stan|
Cont:1

0.579;
0.693

0.540;
0.683

0.2; 0.04 220ms;
104ms

Pre|Targ:ground|Sent-C:Stan|Sent-T:Stan|
Cont:1

0.534;
0.615

0.516;
0.606

0.115;
0.04

287ms;
134ms

Pre|Targ:ground|Sent-C:1|Sent-T:IBM|
Cont:1

0.661;
0.61

0.533;
0.61

0.7; 0 212ms;
105ms

Pre|Targ:ground|Sent-C:IBM|Sent-T:1|
Cont:1

0.555;
0.638

0.504;
0.623

0.266;
0.06

212ms;
105ms

Pre|Targ:IBM-S+W:2|Sent-C:1|Sent-T:1|
Cont:IBM

0.454;
0.589

0.447;
0.575

-0.037;
0.06

478ms;
284ms

Pre|Targ:IBM-S+W:2|Sent-C:1|Sent-T:1|
Cont:IBM-IBM

0.454;
0.592

0.453;
0.578

-0.044;
0.05

380ms;
278ms

Pre|Targ:IBM-S+W:2|Sent-C:1|Sent-T:1|
Cont:IBM-IBM-W

0.442;
0.556

0.46;
0.545

-0.096;
0.04

348ms;
232ms

Table A.4: This table lists the results of the full approach. This chapter contains The descriptions
for the configuration encodings. The remaining columns always have two values. The first value
results from a run on the test set of the dataset of Bar-Haim et al. (2017a). The second value
results from a run on our sample of args.me. We do not allow the stance classifier to deny a
prediction. Hence, the coverage is 1 (Section 6.1.2). The last column represents efficiency. The
listed times are the average processing time for each claim-target-pair to determine the stance.
We ignore the first 10% of the claim-topic-pairs in the time average because the first claim-topic-
pairs sometimes have an extraordinary time consumption because of the amortization process
of the initialization.
The table formats the best values in each category bold whose configuration does not contain
any use of the ground truth. The ideal PRO-CON-ratio is 0.039 in the case of the dataset of
Bar-Haim et al. (2017a) and is 0.01 regarding the case of our sample of args.me.76
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Threshold f1-score accuracy PRO-CON-ratio coverage
0.0 0.561; 0.712 0.516; 0.7 0.163; 0.07 100%; 100%
0.05 0.548; 0.712 0.519; 0.704 0.231; 0.07 94%; 100%
0.1 0.543; 0.712 0.52; 0.704 0.184; 0.08 92%; 100%
0.15 0.543; 0.712 0.525; 0.704 0.182; 0.08 90%; 100%
0.2 0.531; 0.712 0.521; 0.704 0.18; 0.08 90%; 100%
0.25 0.532; 0.713 0.522; 0.711 0.174; 0.1 88%; 94%
0.3 0.519; 0.687 0.536; 0.718 0.228; 0.08 75%; 87%
0.35 0.492; 0.631 0.525; 0.698 0.525; 0.082 68%; 80%
0.4 0.264; 0.306 0.505; 0.848 0.268; 0 40%; 23%
0.6 0.006; 0.02 0.625; 1.0 0.333; 0 1%; 1%
1.0 0.0; 0.0 –; – 0; 0 0%; 0%
Threshold f1-score accuracy PRO-CON-ratio coverage
0.0 0.492; 0.67 0.503; 0.66 -0.072; 0.05 100%; 100%
0.05 0.46; 0.667 0.512; 0.674 -0.072; 0.058 84%; 95%
0.1 0.422; 0.653 0.518; 0.672 -0.086; 0.08 73%; 89%
0.15 0.337; 0.586 0.517; 0.701 -0.01; 0.1 50%; 67%
0.2 0.265; 0.528 0.523; 0.748 -0.062; 0.103 32%; 54%
0.25 0.192; 0.435 0.505; 0.768 0.058; 0.073 23%; 41%
0.3 0.149; 0.411 0.531; 0.76 0.019; 0.08 16%; 38%
0.35 0.112; 0.368 0.544; 0.742 0.046; 0.075 12%; 33%
0.4 0.046; 0.127 0.544; 0.818 -0.244; -0.13 6%; 11%
0.6 0.0; 0.02 –; 1.0 0; 0 0%; 1%
1.0 0.0; 0.0 –; – 0; 0 0%; 0%

Table A.5: These both tables show the results of a threshold test: we allow the stance classifier
to deny predictions. For example, if the threshold is 1.0, then the stance classifier predicts only
the stance if the algorithm is 100% sure.
We selected the two representative configurations for the threshold test, which did not need the
ground truth (see A.4):

1. Pre|Targ:IBM-S-Wiki|Sent-C:IBM|Sent-T:IBM| Cont:1

2. Pre|Targ:IBM+W:3|Sent-C:IBM|Sent-T:IBM| Const:IBM

Each configuration has a separate table. Therefore, the first table is related to the first config-
uration, the second table is related to the second configuration.
Each cell except the cells of the first column contains two values. The first value belongs to
the experiment based on the test set of the dataset of Bar-Haim et al. (2017a). The second
value results from a run on our sample of args.me. The f1-score takes claim-value-pairs with
an unpredicted stance into account, too.
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